Cerebral Vasoconstriction by Indomethacin in Intracranial Hypertension

An Experimental Investigation in Pigs

F. Nilsson, M.D., * S. Björkman, Ph.D., \dagger I. Rosén, M.D., Ph.D., \ddagger K. Messeter, M.D., Ph.D.,§
C.-H. Nordström, M.D., Ph.D. \||

Abstract

Background: Uncontrolled increase in intracranial pressure

 is the most significant cause of mortality in patients with severe traumatic brain lesions, and the efficacy of common nonsurgical treatments has been questioned. Pharmacologically induced cerebral vasoconstriction aiming at a decrease of cerebral blood volume and brain edema has recently been suggested as an alternative. Limited clinical experience with indomethacin as a cerebral vasoconstrictor has been reported but dose- or concentration-effect relationships were not investigated. In particular, there is a lack of data showing whether a therapeutic window exists in which risk of cerebral ischemia is minimized.Methods: In a porcine model of intracranial hypertension induced with two epidural balloons to a level of $26-28 \mathrm{mmHg}$, 18 animals were randomized into three groups receiving 0.1 , 0.3 , and $3.0 \mathrm{mg} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~h}^{-1}$ indomethacin, respectively, as an infusion during 80 min . Intracranial pressure, mean arterial blood pressure, and electrocortical activity were recorded continuously and measurements of cerebral blood flow, arteriovenous difference in oxygen content and cerebral venous $\mathbf{p H}$ were performed at $5,20,40,60$, and 75 min during and 10 min after the indomethacin infusion. Baseline measurements,

[^0]|| Associate Professor, Department of Neurosurgery, University Hospital, Lund, Sweden.

Received from the Department of Anesthesia and Intensive Care, Malmö University Hospital, Malmö, Sweden. Submitted for publication February 22, 1995. Accepted for publication August 29, 1995. Supported by the Medical Research Council (084) and the Faculty of Medicine University of Lund, Sweden

Address reprint requests to Dr. Nilsson: Department of Anesthesia and Intensive Care, Malmö University Hospital, S-205 02 Malmö, Sweden.
performed before the indomethacin infusion, were used as an internal control. The infusions were pharmacokinetically designed to mimic the reported clinical conditions.

Results: An 11\% mean decrease in intracranial pressure during the infusion, but no effects on cerebral blood flow, arteriovenous difference in oxygen content, venous $\mathbf{p H}$, and electrocortical activity were observed in the group of animals receiving $0.1 \mathrm{mg} \cdot \mathbf{k g}^{-1} \cdot \mathbf{h}^{-1}$. When the rate of infusion was 0.3 and $3.0 \mathrm{mg} \cdot \mathrm{kg}^{-1} \cdot \mathbf{h}^{-1}$, the decrease in intracranial pressure was 20 and 25%, respectively, but this was accompanied by a decrease in cerebral blood flow and venous pH , an increase in arteriovenous difference in oxygen content, and a slowing of the electrocortical activity. All changes were statistically significant.

Conclusions: Indomethacin, which is known to constrict precapillary resistance vessels, caused a decrease in intracranial pressure during experimental intracranial hypertension. This was accompanied by signs of cerebral ischemia when indomethacin was used in a dose that has previously been suggested for the treatment of increased intracranial pressure in patients. (Key words: Analgesics, nonsteroidal: indomethacin. Brain: cerebral blood flow; cerebral ischemia; intracranial pressure. Monitoring: electroencephalogram. Species: pigs.)

AN uncontrollable increase in intracranial pressure (ICP) is the final common pathway in many serious intracranial conditions and the main cause of death in patients with severe head injuries. ${ }^{1,2}$ Increased ICP always implies a volume expanding process within the rigid skull cavity and therapy must aim to reduce one or more of the intracranial volumes. Because in many cases surgical evacuation or drainage of cerebrospinal fluid is insufficient, other means to reduce intracranial volume must be taken.
Controlled hyperventilation is commonly used to treat patients with increased ICP. During physiologic conditions, hyperventilation rapidly induces cerebrovascular vasoconstriction with a concomitant reduction of intracranial blood volume and ICP. ${ }^{3,4}$ However, this treatment is of limited value: patients with severe head
injuries may have an impaired or abolished cerebro－ vascular reactivity to changes in $\mathrm{Pa}_{\mathrm{CO}_{2}},{ }^{5-7}$ the effects of hyperventilation appear to be relatively short lasting ${ }^{8,9}$ and adverse effects of short－term as well as prolonged hyperventilation have been reported．${ }^{10,11}$ The efficacy of therapies that primarily aim at reducing cerebral wa－ ter content（corticosteroids，osmotherapy）has also been questioned．${ }^{12,13}$

Increased ICP can be counteracted by pharmacologic vasoconstriction．${ }^{14,15}$ This therapy may also be effective in patients with impaired cerebrovascular reactivity to changes in $\mathrm{Pa}_{\mathrm{CO}_{2}}$ ，and the effects may be long lasting． However，the risk for adverse effects of pharmacologic vasoconstriction may be greater than when hyperven－ tilation is employed．We previously presented experimental ${ }^{16}$ and clinical ${ }^{17}$ data showing that dihy－ droergotamine（DHE）reduces increased ICP．

Indomethacin causes cerebral vasoconstriction in animals ${ }^{18,19}$ and humans ${ }^{20}$ and may therefore be poten－ tially useful for the treatment of increased ICP．In a limited number of patients with uncontrollable intra－ cranial hypertension，a continuous infusion of indo－ methacin reduced ICP to less than 20 mmHg for the duration of the treatment．${ }^{15}$ It was not clear，however， whether the chosen dose of indomethacin was the op－ timal one，or whether a dose－response relationship can be established for this action of indomethacin on the cerebral circulation．The current series of experiments was performed to explore the effects of three infusion rates of indomethacin on cerebral hemodynamics and energy metabolism during intracranial hypertension． The experimental model has recently been shown to produce steady－state conditions of cerebral physiologic parameters during the time needed for the current ex－ periments．${ }^{21}$ To closely mimic the reported clinical conditions ${ }^{15}$ in the pig model，the pharmacokinetics of indomethacin in the pig were briefly explored and infusion schedules were designed that would cause similar exposure of the porcine brains as that of the patients＇brains to active concentrations of the drug．

Material and Methods

The experiments were performed at the Department for Experimental research，Malmö University Hospital， Malmö，Sweden after obtaining approval of the Ethics Committee for Animal Studies of Lund University．
Eighteen pigs（plus 1 in a pilot study，see Appendix） of Swedish mixed domestic breed weighing an average of 20.3 kg were included in the study．The animals
had free access to water but were fasted from food for 24 h before the experiments．The anesthetic proce－ dures and surgical preparations have been described in detail previously．${ }^{21}$ Briefly，the pigs received 7.5 mg midazolam intramuscularly 20 min before anesthetic induction with 100 mg propofol and 1.0 mg fentanyl ${ }_{\text {b }}$ After tracheal intubation，the lungs were ventilated tot normocapnia with $70 \% \mathrm{~N}_{2} \mathrm{O}$ in oxygen．Anesthesia wag continued with infusion of fentanyl $\left(0.1 \mathrm{mg} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~h}_{\stackrel{\text { a }}{3}}^{\stackrel{2}{3}}\right.$ during the preparations，then decreased to $0.0 \frac{\text { 電 }}{}$ $\mathrm{mg} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~h}^{-1}$ ），and neuromuscular blockade w蒿 achieved with 10 mg intravenous alcuronium followe by infusion of $0.6 \mathrm{mg} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~h}^{-1}$ ．Repeated measur ${ }_{\mathrm{\omega}}^{\boldsymbol{\omega}}$ ． ments of blood gases $\left(\mathrm{Pa}_{\mathrm{O}_{2}}, \mathrm{~Pa}_{\mathrm{CO}_{2}}\right)$ were performed tioㅇㅇㅇ adjust the level of ventilation．
A branch of the femoral artery was catheterized forir blood sampling and pressure recordings．Cerebrove黄 ous blood was obtained via retrograde cannulation 骨 the right internal jugular vein with the tip of the catt霊 eter at the base of the skull．${ }^{21}$ Cervical tributaries wer ${ }_{\text {骨 }}^{\text {P／}}$ ligated．For injection of isotope $\left({ }^{133} \mathrm{Xe}\right)$ for cerebr $\frac{0}{8}$ blood flow（CBF）measurements，a catheter was place高 in the right common carotid artery with the tip pro $\frac{{ }^{\frac{1}{6}}}{\frac{\circ}{4}}$ imal to the carotid bifurcation．The external caroti䋃 artery and the occipital artery were ligated to avoi⿱⿱⺻灬心． extracranial isotope accumulation．
Parietal burr holes were drilled bilaterally and ba宏 loons were inserted extradurally，covering a major pa弇 of the parietal region．${ }^{21}$ A microtransducer for $\mathrm{IC} \stackrel{\Phi}{8}^{8}$ monitoring was introduced 5 mm into the brain parert chyma of the right occipital lobe through a separation burr hole．${ }^{22}$

Measurements

Cerebral blood flow was measured after injectio丞 of $2-4 \mathrm{MBq}(54-108 \mu \mathrm{Ci}){ }^{133} \mathrm{Xe}$ dissolved in $0.1 \stackrel{\stackrel{\rightharpoonup}{\circ}}{\stackrel{\rightharpoonup}{\circ}}$ 0.2 ml isotonic saline into the internal carotid artery followed by a flush of 1.2 ml saline．Clearance of the tracer substance was measured by an extracrani朤 lead－shielded NaI scintillation detector（Novo Cer－ ebrograph $10 a$ ，Randers，Denmark）and cerebral ar－ teriovenous oxygen difference $\left(\mathrm{Cav}_{\mathrm{O}_{2}}\right)$ was calculated from the blood hemoglobin concentration and from arterial and internal jugular vein oxygen tensions and saturations．${ }^{23}$ Cerebral venous $\mathrm{pH}(\mathrm{vpH})$ was mea－ sured in blood sampled from the internal jugular vein．Cerebrovascular resistance（CVR）was calcu－ lated as CVR $=$（mean arterial blood pressure［MAP］ －ICP）／CBF．

EFFECTS OF INDOMETHACIN DURING INCREASED ICP

Bipolar electrocortical activity (EEG) was recorded with two pairs of electrodes inserted subcutaneously in the frontal and occipital regions. The signals were recorded (high pass filter: 0.5 Hz ; low pass filter 30 Hz) via an analog-digital converter (PCM-2 A/D VCR, Adaptor, Medical Systems Corp., Greenvale, NY) and a compressed spectral array program was used for computerized fast Fourier transform analyses (sampling frequency: 64 Hz), using a Biologic Brain Atlas III system (Biologic Systems Corp., Mundelein, IL) over 2 min periods corresponding to the CBF measurements. Absolute and relative amplitudes of $\delta(0.5-3.75 \mathrm{~Hz})$, $\tau(4-7.75 \mathrm{~Hz}), \alpha(8-12.75 \mathrm{~Hz}), \beta 1(13-23.75 \mathrm{~Hz})$, and $\beta 2$ ($24-31.75 \mathrm{~Hz}$) bands were computed. Increase in δ activity and decreases in the sum of $\alpha, \beta 1$, and $\beta 2$ activities ${ }^{24,25}$ were used as indicators of cerebral ischemia.

Experimental Design

The experimental protocol is illustrated in figure 1. Approximately 3.5 h after induction of anesthesia, CBF was measured during normocapnia (38 mmHg) as well as hyperventilation (30 mmHg) (measurements 1 and 2) to investigate whether cerebral vasoreactivity was preserved before ICP was increased. Intracranial pressure was then increased by incremental injections of in total approximately 3.5 ml of saline into each epidural balloon over a period of $45-55 \mathrm{~min}$ until a steadystate concentration was established, ${ }^{21}$ after which a new set of measurements (measurement 3) was performed. Infusion of indomethacin was then started at a constant rate and maintained for 80 min , during which ICP was recorded every 10 min and CBF and $\mathrm{Cav}_{\mathrm{O}_{2}}$ were measured at $5,20,40$, and 60 min after start of the infusion (measurements 4-7). At 75 min , another set of measurements was performed during hyperventilation (measurement 8). Ten minutes after the end of indomethacin infusion the final measurements were performed (measurement 9). Controlled ventilation was maintained for another 50 min during which ICP was continuously monitored. The animals were then killed with an overdose of pentobarbital, and correct position of the catheters was verified at necropsy.

Infusion Rates of Indomethacin

The pigs were randomized to receive either $0.1,0.3$, or $3.0 \mathrm{mg} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~h}^{-1}$ (low, medium, and high infusion rates, respectively) indomethacin during an $80-\mathrm{min}$ infusion period. The pharmacokinetic rationale for this dosing is given in the Appendix. Indomethacin (Con-

Fig. 1. Summary of the experimental protocol. After evaluation of the cerebral vasoreactivity to hyperventilation (measurements $1+2$) and induction of increased ICP, a control measurement was performed (measurement 3). After start of the indomethacin infusion, repeated measurements were performed after 5, 20, 40, and 60 min (measurements $4-7$). Measurement 8 was made to evaluate cerebral CO_{2} reactivity during increased ICP. Ten minutes after termination of the infusion, measurement 9 was performed.
fortid, Dumex, Helsingborg, Sweden) was diluted in physiologic saline and infused into a superficial vein of a hind leg by means of a syringe pump. The actual rate of each infusion was determined by assay of the solution and weighing of the syringe before and after the infusion. Arterial blood samples for determination of the indomethacin plasma concentration were drawn before the infusion and at $2,5,10,20,30,40,50,60$, 70,80 , and 90 min .

Assay of Indomethacin

Indomethacin was assayed in the plasma samples by high-performance liquid chromatography, ${ }^{26}$ using diclofenac as the internal standard and ultraviolet UV detection at 260 nm . The within-day coefficient of variation was 5.4% at $0.026 \mu \mathrm{~g} / \mathrm{ml}, 1.1 \%$ at $0.11 \mu \mathrm{~g} / \mathrm{ml}$, and 0.8% at $3.0 \mu \mathrm{~g} / \mathrm{ml}$ ($\mathrm{n}=8 \mathrm{in}$ all cases). The betweenday coefficient of variation was 1.5% at $0.10 \mu \mathrm{~g} / \mathrm{ml}$ (n $=6)$ and 3.8% at $1.0 \mu \mathrm{~g} / \mathrm{ml}(\mathrm{n}=11)$.
The unbound fraction (f_{u}) of indomethacin in porcine plasma was determined by equilibrium dialysis against isotonic phosphate buffer, pH 7.4 , with 8 h incubation at $37^{\circ} \mathrm{C}$. Assay of the plasma and dialysate was by highperformance liquid chromatography. Duplicate determinations were performed on plasma from four different pigs, spiked to 1.0 and $10 \mu \mathrm{~g} / \mathrm{ml}$. For comparison, f_{u} was also determined in plasma from six human volunteer donors, spiked to $10 \mu \mathrm{~g} / \mathrm{ml}$ of indomethacin.
Concentration-effect relationships for the action of indomethacin on ICP, $\mathrm{Cav}_{\mathrm{O}_{2}}, \mathrm{vpH}$, and EEG parameters
were calculated from data recorded at 60 min , i.e., at maximum time for equilibration but before the final hyperventilation.

Statistical Methods

All values are given as mean \pm SD in tables and mean \pm SEM in figures. Repeated-measures analysis of variance was used for statistical comparisons between sequentially obtained values for different physiologic variables. The number of calculations were limited to increase the power of the tests. A calculated difference of $P<0.05$ was considered to be statistically significant.

Results

The total clearance of indomethacin in the pilot experiment (Appendix) was $13.7 \mathrm{ml} \cdot \mathrm{min}^{-1} \cdot \mathrm{~kg}^{-1}$ and the estimated terminal half-life was 17 min . The steadystate plasma concentration (C_{ss}) of indomethacin was $0.078 \pm 0.018 \mu \mathrm{~g} / \mathrm{ml}$ in the low infusion rate group, $0.28 \pm 0.05 \mu \mathrm{~g} / \mathrm{ml}$ in the medium infusion rate group, and $2.95 \pm 0.47 \mu \mathrm{~g} / \mathrm{ml}$ in the high infusion rate group of pigs. On the average, 88% of C_{ss} had been reached by 40 min of infusion. The calculated steady-state clearance was $16.9 \pm 4.0 \mathrm{ml} \cdot \mathrm{min}^{-1} \cdot \mathrm{~kg}^{-1}$, with no difference between the three groups of pigs. The f_{u} of indomethacin in porcine plasma was $2.9 \pm 0.3 \%$ at 1 $\mu \mathrm{g} / \mathrm{ml}$ and $3.4 \pm 0.6 \%$ at $10 \mu \mathrm{~g} / \mathrm{ml}$ total concentration, and in human plasma $0.46 \pm 0.07 \%$ at $10 \mu \mathrm{~g} / \mathrm{ml}$. Using the f_{u} value of 2.9%, the mean $C_{s s}$ of unbound indomethacin consequently would be 0.0022 ± 0.0005 $\mu \mathrm{g} / \mathrm{ml}, 0.0082 \pm 0.0013 \mu \mathrm{~g} / \mathrm{ml}$, and 0.086 ± 0.014 $\mu \mathrm{g} / \mathrm{ml}$ in the three groups.
After surgical preparation and equilibration time (measurement 1) CBF was $49 \pm 3 \mathrm{ml} \cdot 100 \mathrm{~g}^{-1} \cdot \mathrm{~min}^{-1}$, $\mathrm{Cav}_{\mathrm{O}_{2}} 3.1 \pm 0.6 \mathrm{ml} \cdot 100 \mathrm{ml}^{-1}$, and CVR 2.0 ± 0.3 $\mathrm{mmHg} \cdot 100 \mathrm{~g}^{-1} \cdot \mathrm{~min}^{-1} \cdot \mathrm{ml}^{-1}$ with no differences among the three experimental groups. During the hyperventilation test before infusion of indomethacin, all animals showed a decrease in CBF $(43 \pm 3 \mathrm{ml} \cdot 100$ $\left.\mathrm{g}^{-1} \cdot \mathrm{~min}^{-1}\right)$ and increases in $\mathrm{Cav}_{\mathrm{O}_{2}}(3.7 \pm 0.7 \mathrm{ml} \cdot 100$ ml^{-1}) and CVR ($2.3 \pm 0.3 \mathrm{mmHg} \cdot 100 \mathrm{~g}^{-1}$. $\mathrm{min}^{-1} \cdot \mathrm{ml}^{-1}$). No differences were observed among the three experimental groups. During the second hyperventilation test (measurement 8), the increase in ventilation produced only a slight decrease in ICP, and CBF and $\mathrm{Cav}_{\mathrm{O}_{2}}$ remained virtually unchanged, indicating an impaired cerebral vasoreactivity to changes in $\mathrm{p}_{\mathrm{CO}_{2}}$ (figs. 2-4).

Fig. 2. Effects of three different infusion rates of indomethacin ($0.1,0.3$, and $3.0 \mathrm{mg} \cdot \mathrm{kg}^{-1} \cdot \mathbf{h}^{-1}$) on intracranial pressure after induction of intracranial hypertension in 18 anesthetized pigs. The heavy lines are the mean curves. The P values refer to the effects of the treatment between 0 and 60 min evaluated by repeated-measures analysis of variance.

Figure 2 shows ICPs in the three groups of animals before and during continuous infusion of indomethacin and up to 50 min after the end of infusion. The decrease in ICP was significant in all groups. The initial decrease (at 5 min) was 6% in the low-dose group, 15% in the medium-dose group, and 26% in the high-dose group. The mean decrease in ICP during the entire period was $11 \%, 20 \%$, and 25%, in the three groups, respectively. After termination of the indomethacin infusion, ICP increased and reached the baseline level within 30 min in all but two pigs. In these animals in the high infusion rate group, ICP continued to increase and after 50 min reached 48 and 47 mmHg , respectively.

Fig. 3. Effects of three different infusion rates of indomethacin $\left(0.1,0.3\right.$, and $3.0 \mathrm{mg} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~h}^{-1}$) on cerebral perfusion pressure, cerebral blood flow, and cerebral vascular resistance in 18 anesthetized pigs with induced intracranial hypertension. The P values refer to the effects of the treatment between 0 and 60 min , evaluated by repeated-measures analysis of variance.

Systemic physiologic variables are given in table 1. During baseline conditions (measurement 3), no important differences were noted among the three groups of animals. In all groups, infusion of indomethacin was accompanied by a significant increase in MAP. No changes in rectal temperature, arterial $\mathrm{Pa}_{\mathrm{O}_{2}}, \mathrm{~Pa}_{\mathrm{CO}_{2}}$ or pH occurred during the indomethacin infusion. A slight increase in heart rate was observed in the high-dose group.
The effects of indomethacin on cerebral perfusion pressure, CBF, and CVR are shown in figure 3. During baseline conditions (measurement 3) no significant differences were noted among the three experimental groups. During indomethacin infusion, a significant and concentration-related increase in cerebral perfusion pressure was obtained, mainly because of an increase
in MAP (table 1), but also to some extent because of a decrease in ICP (fig. 2). Despite the pronounced increase in cerebral perfusion pressure, significant decreases in CBF were noticed in the medium- and highdose groups. No significant change in CBF was obtained in the low-dose group. A significant increase in CVR was obtained in all three experimental groups: 19% in the low-dose group, 27% in the medium-dose group, and 32% in the high-dose group.
Cerebral metabolic effects, i.e., changes in cerebral $\mathrm{Cav}_{\mathrm{O}_{2}}$ and vpH are shown in figure 4. The $\mathrm{Cav}_{\mathrm{O}_{2}}$ was not significantly changed in the low-dose group, but in the medium- and high-dose groups the increases in $\mathrm{Cav}_{\mathrm{O}_{2}}$ were highly significant. Significant decrease in vpH also occurred in these two groups.

Further indications of the cerebral metabolic effects of indomethacin were obtained from the computerized analysis of the EEG changes (fig. 5). The percent changes in voltage were calculated for low (δ; fig. 5A) and summed high ($\alpha-, \beta 1$, and $\beta 2$; fig. 5B) frequencies. The observed changes were not significant in the low infusion rate group, but significant decrease in high frequencies were observed in the medium infusion rate group, and a significant decrease in high frequencies as well as an increase in δ voltage were found in the high infusion rate group.
Figure 6 summarizes the effects of three infusion rates of indomethacin on the percent changes in ICP, $\mathrm{Cav}_{\mathrm{O}_{2}}$, venous hydrogen ion activity and high and low EEG frequencies. The figure illustrates that with indomethacin treatment of increased ICP no "therapeutic window" could be found, i.e. when an effect was observed on ICP there were simultaneous changes indicating cerebral ischemia.

Discussion

This study explored the effects and the potential risks of cerebral vasoconstriction induced by three different infusion rates of indomethacin during increased ICP. Following is a discussion of (1) the relevance of the experimental model; (2) the possible mechanisms underlying the cerebrovascular effects of indomethacin; (3) the observed effects of indomethacin in the current experimental situation; and (4) the effects of indomethacin during intracranial hypertension as compared to the effects induced by dihydroergotamine.

The Experimental Model

Recent clinical experience indicates that conventional nonsurgical therapies of increased ICP are inef-

Fig．4．Effects of three different infusion rates of indomethacin （ $0.1,0.3$ ，and $3.0 \mathrm{mg} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~h}^{-1}$ ）on cerebral arteriovenous dif－ ference in blood oxygen content and jugular venous pH in 18 anesthetized pigs with induced intracranial hypertension．The P values refer to the effects of the treatment between 0 and 60 min ，evaluated by repeated－measures analysis of variance．
fective in patients with cerebral vasoparalysis（as in－ dicated by an impaired cerebral CO_{2}－vasoreactivity ${ }^{27,28}$ and that the prognosis for these patients is very poor．${ }^{7}$ We have previously shown that the current model pro－ vides the possibility of increasing ICP to a level that is generally considered dangerous，i．e．，$>20 \mathrm{mmHg}$ ，pro－ ducing stable physiologic parameters during the ex－ perimental time period necessary for evaluation of a pharmacologic treatment，and producing a brain lesion characterized by an impaired or abolished cerebral vascular CO_{2} reactivity．Some differences between this experimental situation and the clinical situation do， however，exist．Under clinical conditions，focal intra－ cranial mass lesions are rapidly evacuated and any sub－ sequent elevation of ICP is generally caused by brain edema．Although it might be possible to experimentally mimic this clinical situation，it would have been dif－ ficult to obtain the steady－state conditions for ICP and other physiologic parameters necessary for the current study．The discrepancy should，however，be kept in mind．
Indomethacin has been used for the treatment of pa－ tients with posttraumatic intracranial hypertension re－
sistant to conventional therapy．${ }^{15}$ In the study by Jensen et al．，the patients were given an intravenous bolus dose of 30 mg followed by a continuous infusion of $30 \mathrm{mg} / \mathrm{h}$ ．In the current study，the indomethacin dosage regimen was designed to mimic the continuous infusion in the patients but on a shorter time scale．Indometh－ acin disposition is considerably faster in pigs，mean 을 total clearance $17 \mathrm{ml} \cdot \mathrm{min}^{-1} \cdot \mathrm{~kg}^{-1}$ and observed ter－$\frac{\text { 卷 }}{2}$ minal half－life 17 min ，than in humans，total clearance $\stackrel{\rightharpoonup}{3}_{\square}^{6}$ $1.6 \mathrm{ml} \cdot \mathrm{min}^{-1} \cdot \mathrm{~kg}^{-1}$ and terminal half－life $6.0 \mathrm{~h}^{29} \mathrm{The}^{\frac{\mathrm{O}}{5}}$ rapid disposition allowed attainment of apparen fe steady－state concentrations of indomethacin within the ${ }_{\text {ön }}^{\text {®n }}$ experimental period．Assuming a clearance range of $51-127 \mathrm{ml} \cdot \mathrm{min}^{-1} \cdot 70 \mathrm{~kg}^{-1}$ in humans，${ }^{29}$ the infusion $\frac{\mathrm{o}_{0}^{\circ}}{6}$ rate in the patients ${ }^{15}$ would result in steady－state plasma concentrations between 3.9 and $9.7 \mu \mathrm{~g} / \mathrm{ml}$ ，and the ${ }_{\circ}^{\circ}$ corresponding free concentrations would be $0.02-0.05_{\frac{\circ}{9}}^{\circ}$ $\mu \mathrm{g} / \mathrm{ml}$（if $\mathrm{f}_{\mathrm{u}}=0.46 \%$ ）．The mean free concentration这 in our three experimental groups，i．e．， $0.002,0.008$ 总 and $0.09 \mu \mathrm{~g} / \mathrm{ml}$ ，thus encompass the estimated range ${ }_{\mathrm{e}}^{\mathrm{g}}$ in the clinical study．${ }^{15}$ The goal of mimicking the clin高 ical study as regards cerebral exposure to free indo methacin was consequently fulfilled，and the effect or亶 ICP was very similar

Cerebrovascular Effects of Indomethacin

In primates，a continuous indomethacin infusion o $0.2 \mathrm{mg} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}$ was found to reduce CBF by ap⿳亠口冋冖与 proximately 40% and the cerebrovascular CO_{2} reactiv总 ity by $80 \%{ }^{18}$ Similar effects have also been observe ${ }^{\$}$ in humans，nonhuman primates，dogs，and rats wherea $\stackrel{\text { ®．}}{\text { g }}$ some uncertainty remains regarding the effects in cat： and rabbits．${ }^{19}$ Although the measurements in the curio rent were not performed during normal physiologie． conditions，our results indicate that indomethacin in duces cerebral vasoconstriction also in the pig．
The decrease in hyperemia induced by indomethacirg during hypercapnia appears to be quite specific to this situation．Thus，it has been shown that indomethaci虚 has no effect on cerebral autoregulation ${ }^{30}$ or on the hyperemia caused by hypoxia，${ }^{31}$ hypoglycemia，${ }^{32}$ bi－ cuculline induced seizures，${ }^{33}$ or by transient cerebral ischemia．${ }^{34}$ Because indomethacin is a cyclooxygenase inhibitor it has been speculated that the hypercapnic vasodilation is caused by the release of some eicosanoid whose synthesis is blocked by indomethacin．Currently， there is no direct evidence that hypercapnia is asso－ ciated with altered prostaglandin production．${ }^{19}$ The cerebral hemodynamic effects of indomethacin are not shared by other cyclooxygenase inhibitors such as ibu－

EFFECTS OF INDOMETHACIN DURING INCREASED ICP

Table 1. Values for Systemic Physiologic Parameters during Administration of Three Different Infusion Rates of Indomethacin ($0.1,0.3$, and $3.0 \mathrm{mg} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~h}^{-1}$) in 18 Normoventilated Pigs with Induced Intracranial Hypertension
$\left.\begin{array}{ccccccr} & \text { Baseline } & 5 \mathrm{~min} & 20 \mathrm{~min} & 40 \mathrm{~min} & 60 \mathrm{~min} & \text { P values }\end{array} \begin{array}{r}10 \mathrm{~min} \text { after } \\ \text { indomethacin }\end{array}\right)$
$M A P=$ mean arterial pressure $; H R=$ heart rate.
profen, diclofenac, naproxen, or sodium salicylate. ${ }^{19}$ It is also apparent from our data as well as those of others ${ }^{18}$ that the effect of indomethacin on ICP and CBF is very rapid in onset and dissipation, closely following the plasma concentration curve. This suggests a direct, reversible drug effect rather than a biochemical modulation such as cyclooxygenase inhibition. In the current study it is possible that the impaired CO_{2} reactivity during the last hyperventilation test (measurement 8) was partly caused by the effects of indomethacin. However, it should be emphasized that in our experimental model CO_{2} reactivity is impaired also when no drug is given. ${ }^{21}$

Effects of Indomethacin during Intracranial Hypertension

In the medium and high infusion rate groups, a rapid and pronounced decrease in ICP was observed after start of indomethacin infusion whereas the decrease in ICP in the low infusion rate group was far less pronounced. In the clinical study, ${ }^{15}$ it was speculated that
part of this effect could be caused by a decrease in body temperature. In the current study, temperature was kept constant, consequently the decrease in ICP is in all probability due to a direct vasoconstrictor effect of indomethacin.
It has been suggested that patients with severe traumatic brain lesions do not show an impaired autoregulation of the cerebral perfusion, but that the pressureperfusion curve is shifted to the right. ${ }^{35}$ In accordance with this hypothesis, it has been suggested that increased ICP should be treated with an elevation of MAP. ${ }^{36}$ Should this hypothesis be correct it might be speculated that the decrease in ICP in the current experiments is in fact an autoregulatory effect caused by the increase in MAP. There is, however, no reason to believe that cerebral autoregulation is intact in the current experimental situation. Autoregulation is generally thought to be a more vulnerable regulator of cerebral perfusion than CO_{2}-vasoreactivity ${ }^{5,37}$ and in the current experimental model CO_{2} reactivity is impaired also when no drug is given. ${ }^{21}$ In accordance

Fig. 5. Effects of three different infusion rates of indomethacin $\left(0.1,0.3\right.$, and $3.0 \mathrm{mg} \cdot \mathbf{k g}^{-1} \cdot \mathbf{h}^{-1}$) on low (δ) (A) and high $(\alpha+$ $\beta_{1}+\beta_{2}$) (B) frequences of electroencephalogram during induced intracranial hypertension. The P values refer to the effects of the treatment between 0 and 60 min , evaluated by repeated-measures analysis of variance.
with several recently reviewed studies ${ }^{19}$ we conclude that indomethacin acts directly as a vasoconstrictor also in this experimental situation.
In the high rate infusion group, two pigs showed a progressive increase of the ICP during and after the indomethacin infusion. This suggests that the vasoconstriction was so pronounced that ischemia lesion had developed. A similar effect was observed in some patients in the clinical study. ${ }^{15}$ The effects of indomethacin on $\mathrm{Cav}_{\mathrm{O}_{2}}, \mathrm{vpH}$, and EEG all suggest a risk of cerebral ischemia. These changes did not result from a decrease in cerebral perfusion pressure: the decrease in ICP and, in particular, the increase in MAP actually caused an increase in cerebral perfusion pressure.
It has recently been shown that a single oral dose of 100 mg indomethacin in healthy males causes a decrease in power in the α band and a decrease in mean and peak α frequency of the EEG. ${ }^{38}$ These changes are similar to those found in patients with minor ischemic cerebral disorders, ${ }^{39}$ and, based on these data, administration of indomethacin was suggested as a mode to induce transient cerebral hypoperfusion in humans. ${ }^{38}$ It is thus probable that indomethacin may induce cerebral ischemia during intracranial hypertension.

Indomethacin Versus Dibydroergotamine as Treatment for Intracranial Hypertension

We recently reported the effects of DHE in the current experimental model. ${ }^{16}$ Low-dose (0.15 mg intravenous followed by $0.03 \mathrm{mg} / \mathrm{h}$) and high-dose (1.0 mg intravenous followed by $0.2 \mathrm{mg} / \mathrm{h}$) DHE treatment induced a similar and lasting reduction of ICP. In contrast to the group given low-dose DHE, the group treated with high-dose DHE disclosed a decrease in global CBF, a progressive increase in $\mathrm{Cav}_{\mathrm{O}_{2}}$, a decrease in jugular venous pH , and an increase in EEG delta activity indicating global cerebral ischemia. It was concluded that low-

Fig. 6. Relationships at 60 min of infusion between mean plasma concentration of indomethacin and mean values of cerebral effects. Changes versus baseline of intracranial pressure, cerebral arteriovenous oxygen difference, and jugular venous hydrogen ion activity ($\mathbf{v}\left[\mathrm{H}^{+}\right]$) were approximately the same at a mean concentration of $2.7 \mu \mathrm{~g} / \mathrm{ml}$ as at $0.3 \mu \mathrm{~g} / \mathrm{ml}$, showing that nearly maximal effects had been reached. Electroencephalographic changes, as sum of $\alpha, \beta 1$, and $\beta 2$ voltage (High) and as δ voltage (Low), were still on the rising part of the concentration-effect curve. Plasma concentrations of indomethacin are shown as mean \pm SEM on the intracranial pressure curve.

EFFECTS OF INDOMETHACIN DURING INCREASED ICP

dose DHE might be useful in the treatment of increased ICP and that this treatment appeared to be effective also when cerebral CO_{2} reactivity was impaired. In contrast, the current study indicates that with indomethacin a decrease in ICP to 20 mmHg or less (a level which is often considered as suitable in patients with severe head injuries) is obtained only when $\mathrm{Cav}_{\mathrm{O}_{2}}, \mathrm{vpH}$, and EEG indicate impending cerebral ischemia.
The mechanisms by which the effects of indomethacin and DHE are accomplished are presumably different. The vasoconstriction induced by indomethacin is probably limited to the precapillary resistance vessels, ${ }^{19}$ whereas DHE is a rather nonspecific drug exerting its effect mainly as a noncompetitive agonist at vascular 5-HT (5-hydroxytryptamine) receptors. ${ }^{40}$ It is also a potent agonist at several $5-\mathrm{HT}$ as well as dopamine ${ }_{2}$, $\alpha_{1^{-}}$, and $\alpha_{2^{-}}$-adrenergic binding sites in homogenized brain tissue. ${ }^{41}$ Dihydroergotamine causes a constriction mainly of venous capacitance vessels, ${ }^{42}$ but a contractile effect on precapillary resistance vessels has also been shown. ${ }^{14}$ Both effects are probably also obtained in the human cerebral vasculature. ${ }^{17,43}$ These differences may explain why a decrease of ICP to 20 mmHg or less was obtained with indomethacin only when regional CBF was reduced to a dangerous level while an appropriate dose of DHE may decrease ICP without the risk of inducing cerebral ischemia.
In summary, the current study shows that indomethacin can reduce ICP in an experimental model with an extradural focal mass causing secondary brain damage. The decrease in ICP is obtained by a constriction of precapillary resistance vessels but only when CBF was reduced to a level where progressive changes in $\mathrm{Cav}_{\mathrm{O}_{2}}, \mathrm{vpH}$, and EEG occurred. This study does not support the clinical use of indomethacin in patients with intracranial hypertension due to head injury.

Appendix

Pbarmacokinetic Calculations

An estimate of the pharmacokinetics of indomethacin in the pig was obtained by infusion of $4.1 \mathrm{mg} / \mathrm{kg}$ over 10 min in one animal $(21 \mathrm{~kg})$ with arterial blood sampling at $1,2,4,6,8,10,12,14$, $16,20,30,50,70,100,130,190$, and 250 min after the start of infusion. A three-compartment model was fitted to the plasma concentration data by standard methods (RSTRIP software, MicroMath, Salt Lake City, UT). Total clearance (CL) was calculated as Dose/ AUC, where AUC is the area under the curve. The dose-normalized (to $1 \mathrm{mg} / \mathrm{kg}$) bolus disposition function of indomethacin in the pilot animal was $\mathrm{C}=55.9 \cdot \mathrm{e}^{-2.60 \cdot t}+7.1 \cdot \mathrm{e}^{-0.22 \cdot t}+0.65 \cdot \mathrm{e}^{-0.040 \cdot \mathrm{t}}$ (units: $\mu \mathrm{g} / \mathrm{ml}$ and min^{-1}).

The obtained intravenous bolus disposition function was used to simulate plasma concentration curves with various putative infusion schemes. The MLTIDOSE software ${ }^{44}$ was used. Simulations indicated that 90% of a steady-state concentration (C_{ss}) would be reached 22 min after the start of a zero-order infusion. This mode of administration was consequently chosen.

For each constant rate infusion experiment, the actual C_{ss} of indomethacin was estimated by fitting the equation
$\mathrm{C}=\mathrm{C}_{\mathrm{ss}} \cdot\left(1-\mathrm{e}^{-\mathrm{k} \cdot \mathrm{t}}\right)$
to the concentration data using RSTRIP. The rate constant, k, is that of a monoexponential disposition function. The apparent steadystate clearance $\left(\mathrm{CL}_{3 s}\right)$ was then calculated as $\mathrm{CL}_{s s}=$ (rate of infusion)/ C_{ss}. The steady-state concentrations of unbound indomethacin were calculated as $\mathrm{C}_{\mathrm{ss}} \cdot \mathrm{f}_{\mathrm{u}}$, using the mean value of f_{u} obtained in the in vitro incubations.

The authors thank Olle Wickström and Åsa Fyge for their technical assistance

References

1. Miller JD, Becker DP, Ward JD, Sullivan HG, Adams WE, Rosner MJ: Significance of intracranial hypertension in severe head injury. J Neurosurg 47:503-516, 1977
2. Miller JD, Butterworth JF, Gudeman SK, Faulkner JE, Choi SC, Selhorst JB, Harbison JW, Lutz H, Young HF, Becker DP: Further experiences in the management of severe head injury. J Neurosurg 54 289-299, 1981
3. Severinghaus JW, Lassen N: Step hypocapnia to separate arterial from tissue pCO_{2} in the regulation of cerebral blood flow. Circ Res 20:272-278, 1967
4. Lundberg N, Kjällquist A, Bien C: Reduction of increased intracranial pressure by hyperventilation: A therapeutic aid in neurological surgery. Acta Psychiatr Scand Suppl 34:139, 1959
5. Cold GE, Jensen FT, Malmros R: The cerebrovascular CO_{2} reactivity during the acute phase of brain injury. Acta Anaesthesiol Scand 21:222-231, 1977
6. Messeter K, Nordström C-H, Sundbärg G, Algotsson L, Ryding E: Cerebral hemodynamics in patients with severe head trauma. J Neurosurg 64:231-237, 1986
7. Schalén W, Messeter K, Nordström C-H: Cerebral vasoreactivity and the prediction of outcome in severe traumatic brain lesions. Acta Anaesthesiol Scand. 35:113-122, 1991
8. Raichle ME, Plum F: Hyperventilation and cerebral blood flow. Stroke 3:566-575, 1972
9. Albrecht RF, Miletich DJ, Ruttle M: Cerebral effects of extended hyperventilation in unanaesthetized goats. Stroke 18:649-654, 1987
10. Cold GE. Does acute hyperventilation provoke cerebral oligaemia in comatose patients after acute head injury? Acta Neurochir (Wien) 96:100-106, 1989
11. Muizelaar JP, Marmarou A, Ward JD, Kontos HA, Choi SC, Becker DP: Adverse effects of prolonged hyperventilation in patients with severe head injury: A randomized clinical trial. J Neurosurg 75 731-739, 1991
12. Dearden NM, Gibson JS, McDowall DG, Gibson RM, Cameon MM: Effect of high-dose dexamethasone on outcome from severe head injury. J Neurosurg 1986:64:81-88
13. Kaufman AM, Cardoso ER: Aggravation of vasogenic cerebral edema by multiple-dose mannitol. J Neurosurg 1992: 77:854-586
14. Grände PO: The effect of dihydroergotamine in patients with head injury and raised intracranial pressure. Intensive Care Med 15 : 523-527, 1989
15. Jensen K, Öhrström J, Cold GE, Astrup J: The effects of indomethacin on intracranial pressure, cerebral blood flow and cerebral metabolism in patients with severe head injury and intracranial hypertension. Acta Neurochir (Wien) 108:116-121, 1991
16. Nilsson F, Messeter K, Grände P-O, Rosén I, Ryding E, Nordström C-H: Effects of dihydroergotamine on cerebral circulation during experimental intracranial hypertension. Acta Anaesthesiol Scand 39: 916-921, 1995
17. Asgeirsson B, Grände PO, Nordström C-H, Messeter K, Sjöholm H: Cerebral hemodynamic effects of dihydroergotamine in patients with intracranial hypertension after severe head injury. Acta Anaesthesiol Scand 39:922-930, 1995
18. Pickard JD, MacKenzie ET: Inhibition of prostaglandin synthesis and the response of baboon cerebral circulation to carbon dioxide. Nature (New Biol) 245:187-188, 1973
19. Edvinsson L, MacKenzie ET, McCulloch J: Cerebral Blood Flow and Metabolism. New York, Raven Press, 1993, pp 354-362
20. Wennmalm A, Eriksson S, Wahren J: Effect of indomethacin on basal and carbon dioxide stimulated cerebral blood flow in man. Clin Physiol 1:227-234, 1981
21. Nilsson F, Åkeson J, Messeter K, Ryding E, Rosén I, Nordström C-H: A porcine model for evaluation of cerebral haemodynamics and metabolism during increased intracranial pressure. Acta Anaesthesiol Scand 39:827-834, 1995
22. Sundbärg G, Nordström C-H, Messeter K, Söderström S: A comparison of intraparenchymatous and intraventricular pressure recording in clinical practice. J Neurosurg 67:841-845, 1987
23. Åkesson J, Nilsson F, Ryding E, Messeter K: A porcine model for sequential assessment of cerebral haemodynamics and metabolism. Acta Anaesthesiol Scand 36:419-426, 1992
24. Jonkman EJ, van Huffelen AC, Pfurtscheller G: Quantitative EEG in cerebral ischemia. Clinical applications of computer analysis of EEG and other neurophysiological signs, Handbook of Electroencephalography and Clinical Neurophysiology. Edited by Lope da Silva FH, Storm van Leeuwen W, Rémond A. Amsterdam, Elsevier, 1986, pp 205-237
25. Nagata K, Tagawa K, Shishido F, Uemura K: Topographic EEG correlates of cerebral blood flow and oxygen consumption in patients with neuropsychological disorders, Topographic Mapping of Brain Electrical Activity. Edited by Duffy FH. Butterworths, Boston, 1986, pp 357-370
26. Wåhlin-Boll E, Brantmark B, Hanson A, Melander A, Nilsson C: High-pressure liquid chromatographic determination of acetylsalisylic acid, salicylic acid, diflunisal, indomethacin, indoprofen and indobufen. Eur J Clin Pharmacol 20:375-378, 1981
27. Muizelaar JP, Lutz HA, Becker DP: Effect of mannitol on ICP and CBF and correlation with pressure autoregulation in severely head-injured patients. J Neurosurg 61:700-706, 1984
28. Nordström C-H, Messeter K, Sundbärg G, Schalén W, Werner M, Ryding E: Cerebral blood flow, vasoreactivity, and oxygen consumption during barbiturate therapy in severe traumatic brain lesions. J Neurosurg 68:424-431, 1988
29. Alván G, Orme M, Bertilsson L, Ekstrand R, Palmér L: Pharmacokinetics of Indomethacin. Clin Pharmacol Ther 18:364-373, 1975
30. Pickard JD, MacDowell LA, MacKenzie ET, Harper AM: Response of the cerebral circulation in baboons to changing perfusion pressure after indomethacin. Circ Res 40:198-203, 1977
31. Sakabe T, Siesjö BK: The effect of indomethacin on the blood flow-metabolism couple in the brain under normal, hypercapnic and hypoxic conditions. Acta Physiol Scand 107:283-284, 1979
32. Nilsson B, Agardh C-D, Ingvar M, Siesjö BK: Cerebrovascular response during and following severe insulin-induced hypoglycemia: CO_{2}-sensitivity, autoregulation, and the influence of prostaglandin synthesis inhibition. Acta Physiol Scand 111:455-463, 1981
33. Ingvar M, Nilsson B, Siesjö BK: Local cerebral blood flow in the brain during bicuculline-induced seizures and the modulating influence of inhibition of prostaglandin synthesis. Acta Physiol Scand 111:205-212, 1981
34. Kågström E, Smith M-L, Wallstedt L, Siesjö BK: Cyclo-oxygenase inhibition by indomethacin and recirculation following cerebral ischemia. Acta Physiol Scand 118:193-201, 1983
35. Gray J, Rosner MJ: Pressure volume index Part II: The effects of low cerebral perfusion pressure and autoregulation. J Neurosurg 67:369-376, 1987
36. Rosner MJ, Daughton S: Cerebral perfusion pressure management in head injury. J Trauma 30:933-941, 1990
37. Cold GE, Taagehøj Jensen F: Cerebral autoregulation in unconscious patients with brain injury. Acta Anaesthesiol Scand 22: 270-280, 1978
38. Kraaier V, Van Huffelen AC, Wieneke GH, Van der Worp HB, Bär PR: Quantitative EEG changes due to cerebral vasoconstriction. Indomethacin versus hyperventilation-induced reduction in cerebral blood flow in normal subjects. Electroencephalogr Clin Neurophys 82:208-212, 1992
39. Van Huffelen AC, Poortvliet DJC, Van der Wulp CJM: Quantitative electroencephalography in cerebral ischemia. Detection of abnormalities in "normal" EEGs, Brain Ischemia: Quantitative EEG and Imaging Techniques. Progress in Brain Research Vol 62. Edited by: Pfurtscheller G, Jonkman EJ, Lopes da Silva FH. Elsevier, Amsterdam, 1984, pp 3-29
40. Müller H, Glusa E, Markwardt F: Dual effect of dihydroergotamine at vascular 5 -hydrocytryptamine receptors in pithed rats. Pharmacology 37:248-253, 1988
41. McCarthy BG, Peroutka SJ: Comparative neuropharmacology of dihydroergotamine and sumatriptan (GR 43175). Headache 29: 420-422, 1989
42. Mellander S, Nordenfelt I: Comparative effects of dihydroergotamine and noradrenaline on resistance, exchange and capacitance functions in the peripheral circulation. Clin Sci 39:183-201, 1970
43. Asgeirsson B, Grände PO, Nordström CH: A new therapy of post-trauma brain oedema based on haemodynamic principles for brain volume regulation. Intensive Care Med 20:260-267, 1994
44. Thompson GA, Shumaker RC: MLTIDOSE: A multiple dose simulation program for linear systems characterized by exponential functions. Drug Metab Rev 21:463-469, 1989-90

[^0]: - Staff Anesthesiologist, Department of Anesthesia and Intensive Care, Malmö University Hospital, Malmö, Sweden.
 \dagger Research Pharmacist and Associate Professor, Hospital Pharmacy, Malmö University Hospital, Malmö, Sweden
 \ddagger Professor and Chairman, Department of Clinical Neurophysiology, University Hospital, Lund, Sweden.
 \mathbb{S} Head of Department and Associate Professor, Department of Anesthesia and Intensive Care, Malmö University Hospital, Malmö, Sweden.

