also present in the other studies on this subject. In addition, physicians in the trial could decide to give a blood transfusion
out of protocol in life-threatening situations.

We agree with Drs. Hall and Sharifpour that there is still a shortage of robust evidence from large RCTs that
leukodepleted blood and shorter duration of blood storage can improve outcomes in surgical patients. As mentioned
in the article, we agree with Dr. Sharifpour that despite
the apparent benefits of a liberal strategy of erythrocyte
transfusion in cancer patients undergoing abdominal sur-
gery on short-term outcomes, the effects of this therapy
on long-term outcomes such as cancer recurrence are not
known.

As pointed out by von Heymann et al., anemia may represent a heavy burden in oncologic patients with severe
comorbidities and a substantial postoperative risk. Our
RCT clearly showed that in a well-balanced population
of cancer patients, a restrictive strategy of postoperative trans-
fusion was associated with worse outcomes after abdominal
surgery. This specific group of patients may not adapt well
to anemia, presenting a higher incidence of complications,
including 30-day cardiovascular events and mortality. Our
results are in agreement with other data reported in the
literature.

Competing Interests
The authors declare no competing interests.

Jean-Louis Vincent, M.D., Ph.D., Ludmila A. Hajjar,
M.D., Ph.D., Juliano Pinheiro de Almeida, M.D. Erasme
Hospital, Université Libre de Bruxelles, Brussels, Belgium
(J-L.V.). jlvincen@ulb.ac.be

References
1. Hajjar LA, Vincent JL, Galas FR, Nakamura RE, Silva CM,
Santos MH, Fukushima J, Kilil Filho R, Sierra DB, Lopes
NH, Mauad T, Roquim AC, Sundin MR, Leão WC, Almeida JP,
Pomerantzef PM, Dallan LO, Fatene BF, Stolf NA, Aucler JO Jr:
Transfusion requirements after cardiac surgery: The TRACS
randomized controlled trial. JAMA 2010; 304:1559–67
AB, Karlsson S, Johansson PL, Aneman A, Vang ML, Winding
R, Neibrich L, Nibro HJ, Rasmussen BS, Lauridsen JR, Nielsen
JS, Oldner A, Pettila V, Cronhjort MB, Anderssen LH, Pedersen
UG, Reiter N, Wiis J, White JO, Russell L, Thornberg H, Hjortrup
PB, Muller RG, Moeller MH, Steensen M, Tjæder I, Kilsand K,
Thyø MA, Lodahl D, Møller MH, Sjøbø B, Bundgaard H,
Hjortrup PB, Muller RG, Moeller MH, Steensen M, Tjæder I,
Kilsand K, Thyø MA, Lodahl D, Møller MH, Sjøbø B, Bundgaard H,
Thyø MA, Lodahl D, Merkedahl R, Albeck C, Illum D, Kruse
M, Winkel P, Perner A; TRISS Trial Group; Scandinavian
3. Murphy GJ, Pike K, Rogers CA, Wordsworth S, Stokes EA,
Angelini GD, Reeves BC; TITRe2 Investigators: Liberal or
2015; 372:997–1008
WD, Ciui X, Klein HG, Schechter AN, Banks SM, Eichacker
PQ, Natanson C: Randomization in clinical trials of tiritated
therapies: Unintended consequences of using fixed treat-
5. Vincent JL, Sakr Y, Lelubre C: The future of observational
research and randomized controlled trials in red blood cell
Occurrence in Acutely Ill Patients (SOAP) Investigators: Are
blood transfusions associated with greater mortality rates?
Results of the Sepsis Occurrence in Acutely Ill Patients study.
Anesthesiology 2008; 108:31–9
U, Barz D, Reinhart K: Anemia and blood transfusion in a surgi-
cal intensive care unit. Crit Care 2010; 14:R92
8. Park DW, Chun BC, Kwon SS, Yoon YK, Choi WS, Sohn JW,
HY, Cheong HJ, Song YG, Choi HJ, Kim JM, Kim MJ: Red
blood cell transfusions are associated with lower mortality in
patients with severe sepsis and septic shock: A propensity-
9. Pinheiro de Almeida J, Vincent JL, Barbosa Gomes Galas
FR, Pinto Marinho de Almeida E, Fukushima JT, Osawa EA,
Bergamin F, Lee Park C, Nakamura RE, Fonseca SM, Cutait G,
Inacio Alves J, Bazan M, Vieira S, Vieira Sandrini AC, Palomba
H, Ribeiro U Jr, Crippa A, Dalloglio M, Del Pilar Estevez Diz M,
Kalil Filho R, Costa Aucler JO Jr, Rhodes A, Hajjar LA: Transfusion
requirements in surgical oncology patients: A prospective, ran-
domized controlled trial. Anesthesiology 2015; 122:29–38
Pagliarello G, Tweeddale M, Schweitzer I, Yetisir E: A mul-
ticenter, randomized, controlled clinical trial of transfusion
requirements in critical care. Transfusion Requirements
in Critical Care Investigators, Canadian Critical Care Trials
11. Moher D, Schulz KF, Altman DG: The CONSORT statement:
Revised recommendations for improving the quality of reports
of parallel-group randomized trials. Lancet 2001; 357:1191–4

Heparin for Cardiac Surgery: Old and Forgotten?

To the Editor:
We read with interest the article by Karkouti et al. published in the March 2015 issue regarding a transfusion algorithm based on point-of-care coagulation tests in cardiac surgery.

We wish to shed light on an issue that was not touched upon in the article but represents the first step in their algorithm and, without dispute, the first and most important single intervention in managing postcardiopulmonary bypass coagulopathy.

The dose of the heparin neutralization by protamine is shown in the algorithm as a ratio of milligrams to milligram. It has long been recommended that heparin should not be quantified in milligram, but in units. In fact, to our knowledge, none of the currently available commercial heparins display its potency in milligram. This quantification of heparin in milligram introduces risk if the ordering physician is unfamiliar with the milligram to unit conversion.

The impression that 1 mg unfractionated heparin currently contains 100 units is widely accepted but dated and...
erroneous. One milligram heparin has contained 130 units of heparin at least since the Second International Standardization in 1968. More recently, after contamination issues, the Food and Drug Administration and U.S. Pharmacopeia have mandated a new reference standard for heparin, and 1 mg heparin now contains not less than 180 units. We do not think this change in heparin formulation is recognized widely and hence advocating heparin use in milligram may lead to a variable interpretation and dosing.

Furthermore, the Society of Thoracic Surgeons and Society of Cardiac Anesthesiologists Practice Guidelines for Blood Transfusion and Conservation in Cardiac Surgery (2007, updated in 2011) have recommend using either a low-dose protamine protocol (50% of heparin dose) or a titrated protamine dose guided by activated clotting time response testing to neutralize heparinization in the postcardiopulmonary bypass patient. Although the evidence in favor is not strong, we wonder if adherence to above guidelines may have impacted the data presented.

Advances in technology such as point-of-care coagulation testing should be embraced in a timely manner, but we must acknowledge that age-old drugs such as heparin and protamine have not yet been evaluated systematically in cardiac surgery.

Competing Interests
The authors declare no competing interests.


References

(Accepted for publication June 15, 2015.)

In Reply:
We appreciate the letter by Bulatovic and Taneja on our study and agree that it would have been more accurate to state heparin dose in units rather than in milligrams in our algorithm. We also agree that heparin management, which encompasses heparin dosing, monitoring of effect, and reversal with protamine, is an important component of cardiac surgery that is incompletely understood and requires further investigation. Given that our algorithm was not aimed at optimizing or even modifying heparin management, we made no attempts to alter or audit heparin management practice. The milligram to milliliter representation of the protamine to heparin dose is consistent with a low-dose protamine practice. Because heparin management at our institution was not altered with protocol implementation, this is not likely to have had an impact on our results.

Our algorithm was aimed at optimizing coagulation management by incorporation of point-of-care coagulation testing into routine practice, and the results suggest that we succeeded in reducing transfusions and some adverse outcomes. We are looking forward to the results of our large, multicenter study to see whether our findings are generalizable (ClinicalTrials.gov Identified NCT02200419).

Nevertheless, we do believe that additional benefits in coagulation management can be achieved by optimizing heparin management. We have noticed that in some of our patients who bleed unexpectedly, there is a profound deterioration in coagulation status, particularly platelet count and function, from rewarming to postprotamine periods, suggesting a contributory effect of protamine to the coagulopathy. Perhaps, these patients would not have bled if heparin management was optimized by, for example, using mathematical models or point-of-care heparin–protamine titration systems.

We therefore agree with Bulatovic and Taneja that systematic studies on heparin management in cardiac surgery are required, as we do not seem to be much ahead of where we were in the 1970s. Perhaps, with optimized heparin

Anesthesiology 2015; 123:966-79

Correspondence