Influence of Sevoflurane on the Metabolism and Renal Effects of Compound A in Rats

Evan D. Kharasch, M.D., Ph.D.,* Jes-Lara Schroeder, B.S.,† Pam Sheffels, B.S.,‡ H. Denny Liggitt, D.V.M.§

Background: The sevoflurane degradation product compound A is nephrotoxic in rats. In contrast, patient exposure to compound A during sevoflurane anesthesia has no clinically significant renal effects. The mechanism for this difference is incompletely understood. One possibility is that the metabolism and toxicity of compound A in humans is prevented by sevoflurane. However, the effect of sevoflurane on compound A metabolism and nephrotoxicity is unknown. Thus, the purpose of this investigation was to determine the effect of sevoflurane on the metabolism and renal toxicity of compound A in rats.

Methods: Male rats received 0.25 mmol/kg intraperitoneal compound A, alone and during sevoflurane anesthesia (3%, 1.3 minimum alveolar concentration, for 3 h). Compound A metabolites in urine were quantified, and renal function was evaluated by serum creatinine and urea nitrogen, urine volume, osmolality, protein excretion, and renal tubular histology.

Results: Sevoflurane coadministration with compound A inhibited compound A defluorination while increasing relative metabolism through pathways of sulfoxidation and β-lyase-catalyzed metabolism, which mediate toxicity. Sevoflurane coadministration with compound A increased some (serum creatinine and urea nitrogen, and necrosis) but not other (urine volume, osmolality, and protein excretion) indices of renal toxicity.

Conclusions: Sevoflurane does not suppress compound A nephrotoxicity in rats in vivo. These results do not suggest that lack of nephrotoxicity in surgical patients exposed to compound A during sevoflurane anesthesia results from an inhibitory effect of sevoflurane on compound A metabolism and toxicity. Rather, these results are consistent with differences between rats and humans in compound A exposure and inherent susceptibility to compound A nephrotoxicity.

FLUOROMETHYL-2,2-difluoro-1-(trifluoromethyl)vinyl ether (compound A) is the major product formed in normal clinical situations from degradation of sevoflurane by carbon dioxide absorbents which contain strong base.1-2 Compound A is nephrotoxic to rats when administered by inhalation or intraperitoneal injection, causing proximal tubular necrosis, increased serum creatinine, diuresis, and proteinuria.3,4 In rats, compound A undergoes a complex route of metabolism and bioactivation, which mediates the nephrotoxicity (fig. 1). Compound A reacts with glutathione to form glutathione conjugates (fig. 1, 2 and 3), which undergo cleavage to the corresponding cysteine S-conjugates (fig. 1, 4 and 5). N-acetylation of cysteine S-conjugates forms mercapturates (fig. 1, 6 and 7), which are excreted in urine. The cysteine S-conjugates are metabolized by rat renal β-lyase to reactive intermediates, which are reflected by the urine excretion of 3,3,3-trifluoro-2-(fluoromethoxy)propanoic acid.8 Like many other nephrotoxic haloalkenes, β-lyase-catalyzed metabolism of compound A cysteine S-conjugates is thought to mediate nephrotoxicity, because inhibition of renal S-conjugate uptake, β-lyase activity, or β-lyase-catalyzed metabolism diminished compound A nephrotoxicity, whereas glutathione and cysteine S-conjugates replicated compound A nephrotoxicity in vivo.4-7 Compound A cysteine and mercapturic acid conjugates can also undergo sulfoxidation (fig. 1, 10-13). Compound A sulfoxides are also thought to contribute to nephrotoxicity, because induction (or inhibition) of sulfoxidation in vivo increased (or decreased) compound A nephrotoxicity,8,9 and the sulfoxide conjugates were more toxic than other compound A conjugates to renal proximal tubular cells in culture.10 Compound A undergoes qualitatively similar biotransformation in humans.8,11-15

Compound A formation during sevoflurane anesthesia in surgical patients has been extensively evaluated and found to have no clinically significant effects.16-22 Investigations have typically compared low-flow sevoflurane with high-flow sevoflurane, low-flow isoflurane or desflurane, or intravenous anesthetics. In none of the published studies using low-flow or closed-circuit sevoflurane were there any differences between anesthetics in postoperative renal function as assessed by the standard markers of blood urea nitrogen, creatinine, and creatinine clearance, even in the patients with the highest compound A exposures. In patients undergoing very long procedures, greater proteinuria in patients receiving low-flow sevoflurane was seen in one investigation17 but not in any of the others. Proteinuria, however, is commonly seen after anesthesia with all halogenated and intravenous anesthetics.23 In a high-risk group of patients with preexisting renal insufficiency, a known risk factor for postoperative renal dysfunction, there was no difference between low-flow sevoflurane and low-flow isoflurane on renal function.20

The reason why compound A formation during sevoflurane anesthesia in surgical patients does not alter renal function is incompletely understood. One potential...
explanation is simply that rats in the experimental toxicology studies received comparatively greater compound A doses than the doses to which humans are exposed during surgery. A second potential explanation is the numerous quantitative differences between humans and rats in the bioactivation and toxicity of compound A. A third potential explanation is that rats in experimental studies have been exposed exclusively to compound A, whereas patients are exposed to sevoflurane as well as compound A, and sevoflurane may diminish the toxicity of compound A. Therefore, the purpose of this investigation was to determine the effect of sevoflurane on the metabolism and toxicity of compound A in rats.

Materials and Methods

Chemicals and Reagents
Fluoromethyl-2,2-difluoro-1-(trifluoromethyl)vinyl ether (FDVE, 99.92% purity) and sevoflurane were provided by Abbott Laboratories (Abbott Park, IL). Dichloroacetic acid, magtrieve, and benzophenone hydrazone were purchased from Aldrich (Milwaukee, WI); methylene chloride and hydrochloric acid were purchased from Fisher Scientific (Pittsburgh, PA); ethyl acetate (GC grade) was purchased from Burdick and Jackson (Muskegon, MI); and anhydrous ether was purchased from J.T. Baker (Phillipsburg, NJ). All stock drug solutions and buffers were prepared using Milli-Q grade water (Millipore, Bedford, MA).

N-acetyl-S-[1,1-difluoro-2-fluoromethoxy-2-(trifluoromethyl) ethyl]-L-cysteine (N-Ac-DFEC, 6), (E, Z)-N-acetyl-S-[1-fluoro-2-fluoromethoxy-2-(trifluoromethyl) vinyl]-L-cysteine ((E, Z)-N-Ac-FFVC, 7), N-acetyl-S-[1,1-difluoro-2-fluoromethoxy-2-(trifluoromethyl) ethyl]-L-cysteine sulfoxide (N-Ac-DFEC-SO, 12), and (E, Z)-N-acetyl-S-[1-fluoro-2-fluoromethoxy-2-(trifluoromethyl) vinyl]-L-cysteine sulfoxide ((E, Z)-N-Ac-FFVC-SO, 13) were synthesized as described previously, as was 3,3,3-trifluoro-2-(fluoromethoxy)propanoic acid (F-propionic acid, 8).

Animal Treatments
All animal experiments were approved by the University of Washington Animal Use Committee (Seattle, Washington) and conducted in accordance with American Association for Accreditation of Laboratory Animal Care guidelines. Male Fisher 344 rats (250–300 g; Harlan, San Diego, CA) were housed in individual metabolic cages, provided food and water ad libitum, and maintained on a 12-h light-dark cycle. Twelve rats were randomized to one of two treatment groups after baseline blood (saphenous vein) and 24-h urine samples were obtained. Six rats received FDVE (0.25 mmol/kg in corn oil, 0.125 mmol/ml) via intraperitoneal injection. Six rats were anesthetized with sevoflurane for 1 h, injected and

Anesthesiology, V 103, No 6, Dec 2005

Downloaded From: http://anesthesiology.pubs.asahq.org/pdfaccess.ashx?url=/data/journals/jasa/933728/ on 06/19/2017

Fig. 1. Biotransformation of compound A (fluoromethyl-2,2-difluoro-1-(trifluoromethyl)vinyl ether [FDVE]). GGT/DP = γ-glutamyltransferase/dipeptidase; GSH = glutathione.
intraperitoneally with compound A (0.25 mmol/kg), and then exposed to 2 more hours of sevoflurane. Animals were exposed in a 201 inhalation chamber to 3% sevoflurane (1.3 minimum alveolar concentration) in oxygen at 6 l/min, administered via a calibrated vaporizer, without the use of any carbon dioxide absorbent, with constant monitoring of chamber gas concentration to maintain sevoflurane concentration at 3% and minimize any carbon dioxide rebreathing (Capnomac Ultima; Datex, Madison, WI). Animals rested on a warming pad, with constant monitoring to maintain normal body temperature at 37°C. Rats were returned to the metabolic cages after recovery from anesthesia, and urine was collected on ice for 24 h. Rats were anesthetized with pentobarbital and killed by cardiac exsanguination. Kidneys were immediately excised, trimmed, and cut in a midtransverse plane through cortex and medullary pyramid, and a section was fixed in 10% neutral buffered formalin. The remainder was flash frozen in liquid nitrogen and stored at −80°C.

Sample Analyses

Plasma urea nitrogen was measured spectrophotometrically using the Infinity urea nitrogen reagent (Thermo DMA, Louisville, CO) according to the manufacturer’s directions. Plasma creatinine was measured using Vitros Crea slides on a Vitros 250 chemistry system (Ortho-Clinical Diagnostics, Rochester, NY). Urine osmolality was determined using an Advanced Instrument (Norwood, MA) model 3D3 freezing point osmometer. Urine protein concentrations were measured spectrophotometrically using a microprotein kit (Sigma 611-A; Sigma-Aldrich, St. Louis, MO). Urine fluoride concentrations were measured using a fluoride-specific electrode (Thermo Electron Corp., Waltham, MA). Thawed urine (80 μl) was added to 20 μl low-level total ionic strength adjustment buffer (1 mM NaCl in 1 mM acetic acid, adjusted to pH 5.0–5.5 with 5 mM NaOH). An aliquot (40 μl) was then placed on the inverted electrode, and a microscope cover slip was placed on top. Fluoride concentrations in unknowns were calculated from electrode voltage using a standard curve prepared by analyzing calibration standards of fluoride in water (0.1–5 mM). Urine concentra-

Table 1. Influence of Sevoflurane on Compound A Nephrotoxicity

<table>
<thead>
<tr>
<th></th>
<th>Predose</th>
<th>Predose</th>
<th>Postdose</th>
<th>Postdose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BUN, mg/dl</td>
<td>12 ± 2</td>
<td>16 ± 4</td>
<td>11 ± 2</td>
<td>34 ± 15†</td>
</tr>
<tr>
<td>Serum creatinine, mg/dl</td>
<td>1.1 ± 0.0</td>
<td>1.0 ± 0.3</td>
<td>0.8 ± 0.1</td>
<td>1.5 ± 0.4†</td>
</tr>
<tr>
<td>Urine volume, ml</td>
<td>5.1 ± 0.9</td>
<td>19.8 ± 4.4*</td>
<td>4.1 ± 0.4</td>
<td>23.0 ± 10.3*</td>
</tr>
<tr>
<td>Urine protein, mg/24 h</td>
<td>7.1 ± 0.8</td>
<td>26.2 ± 6.2*</td>
<td>6.7 ± 0.5</td>
<td>24.2 ± 9.0*</td>
</tr>
<tr>
<td>Urine osmolality, mOsm/kg</td>
<td>1,910 ± 300</td>
<td>710 ± 70*</td>
<td>1,960 ± 325</td>
<td>520 ± 110*</td>
</tr>
<tr>
<td>Necrosis (1 = low, 4 = high) [median]</td>
<td>2.7 ± 0.8 [2.5]</td>
<td>3.8 ± 0.4 [4.0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results are mean ± SD. † Significantly different from predose value (P < 0.05). Significantly different from compound A only (P < 0.05).

BUN = blood urea nitrogen.

The dose of compound A used in these experiments (0.25 mmol/kg) was based on the threshold dose for nephrotoxicity observed in previous experiments. Renal effects (urine volume, protein excretion and osmolality, serum creatinine and urea nitrogen, and necrosis; table 1) were similar to those seen previously at this intraperitoneal dose and at approximately 350–400 ppm-h inhaled compound A.

Coadministration of compound A with 3 h of sevoflurane increased some but not all measures of renal toxicity (table 1). The increase in serum creatinine and urea nitrogen concentrations, and histologic evidence of proximal tubular necrosis caused by compound A, were greater in rats that also received 3 h of sevoflurane anesthesia. In contrast, changes in urine volume, osmo-

Statistical Analysis

Data were analyzed using repeated-measures analysis of variance with Student-Newman-Keuls comparisons, or unpaired t test as appropriate using SigmaStat (SPSS Science, Chicago, IL). All results are reported as the mean ± SD. Statistical significance was assigned at P < 0.05.

Results

Anesthesiology, V 103, No 6, Dec 2005
The results of this experiment show that sevoflurane altered compound A metabolism. The decrease in urine fluoride excretion when compound A was coadministered, compared with the control, was more than 90%.

Discussion

The decrease in urine fluoride excretion when compound A was coadministered was more than 90%.
compound A. In the current experiment, a nonsevolflurane anesthetic was not used as the control, because the hypothesis was that sevoflurane specifically, not anesthesia in general, might prevent compound A toxicity. If sevoflurane effects on compound A are similar in humans and rats, then the lack of suppression of compound A nephrotoxicity by sevoflurane in rats in vivo does not support the notion that compound A exposure in humans is prevented by sevoflurane coadministration. Were the intrinsic toxicity of compound A similar in rats and humans but actual toxicity diminished by coadministration of sevoflurane in humans, sevoflurane would have been expected to reduce compound A toxicity in these rat experiments. Rather, these experiments support the notion that rats and humans differ in their susceptibility to compound A nephrotoxicity.

There are at least two potential explanations for the difference between humans and rats in compound A renal effects. One is simply the compound A dose to which patients are exposed. Whereas the nephrotoxic threshold in rats is 0.2–0.25 mmol/kg, patients are exposed to much lower (at least 40-fold) doses of compound A (typically 0.005 mmol/kg for a 3- to 4-h anesthetic). A second potential explanation is the well-known interspecies differences in the metabolism of compound A, which is thought to mediate toxicity. For example, in rats compared with humans, there are (1) greater rates of compound A-glutathione conjugate formation in hepatic microsomes and cytosol, (2) greater β-lyase-catalyzed metabolism of compound A-cysteine conjugates in vitro in rat kidneys, (3) greater excretion of N-Ac-DFVE relative to (E, Z)-N-Ac-FFVC in rats, (4) greater excretion of 3,3,3-trifluoro-2-fluoromethoxypropanoic acid (reflecting β-lyase-catalyzed FDVE cysteine conjugates metabolism) in vitro in rats, (5) greater ratio of 3,3,3-trifluoro-2-fluoromethoxypropanoic acid (toxicification) to mercapturates (detoxication) in urine in rats, (6) relative resistance of human proximal tubular cells to the cytotoxic effects of FDVE-cysteine-S-conjugates, and (7) greater sulfoxidation of compound A mercapturates.

There are some differences between the rat model used in these experiments and clinical scenarios. Rats received compound A by intraperitoneal injection, rather than by inhalation, to better control the dose. However, compound A nephrotoxicity is similar whether it is administered by inhalation or intraperitoneal injection. In humans, the amount of sevoflurane to which patients are exposed is several orders of magnitude greater than that of compound A. In these experiments, the compound A dose had to be high enough to elicit a reproducible effect (0.25 mmol/kg), which resulted in a dose much higher than equivalent exposures in humans (approximately 0.005 mmol/kg), hence, the relative sevoflurane:compound A exposure was less than in clinical scenarios. It is unknown whether this affected the results.

In summary, in rats, coadministration of compound A together with sevoflurane, compared with compound A alone, increased compound A metabolism via pathways that mediate toxicity, and increased some but not all indices of nephrotoxicity. These results do not suggest that lack of nephrotoxicity in surgical patients exposed to compound A during sevoflurane anesthesia results from an inhibitory effect of sevoflurane on compound A metabolism and toxicity. Rather, these results are consistent with differences between rats and humans in compound A exposure and inherent susceptibility to compound A nephrotoxicity.

The authors thank Dale Whittington, B.S. (Research Scientist, Department of Anesthesiology, University of Washington, Seattle, Washington), for technical assistance in the urine analysis.

References

15. Kharasch ED, Jucbert C: Compound A uptake and metabolism to mercap-
turic acids and 3,3,3-trifluoro-2-fluoromethoxypropanoic acid during low-flow sevoflurane anesthesia: Biomarkers for exposure, risk assessment, and interspecies comparison. ANESTHESIOLOGY 1999; 91:1267–78

