Enhanced Mobilization of Intracellular Ca$^{2+}$ Induced by Halothane in Hepatocytes Isolated from Swine Susceptible to Malignant Hyperthermia

Paul A. Iaizzo, Ph.D.,* Markus J. Seewald, Ph.D.,† Richard Olson, M.S.,‡ Denise J. Wedel, M.D.,* Dennis E. Chapman, Ph.D.,† Margareta Berggren,§ Hans M. Eichinger, Ph.D.,§ Garth Powis, D.Phil.‖

Halothane, in a dose-dependent manner, induced the release of intracellular Ca$^{2+}$ in hepatocytes prepared from swine. The magnitude of the release induced by halothane was greater for hepatocytes prepared from animals susceptible to malignant hyperthermia (MH) than for those from normal swine. Two different methods were used to ascertain the release of Ca$^{2+}$ induced by halothane: 1) the release of 45Ca$^{2+}$ from nonmitochondrial stores of saponin-permeabilized hepatocytes was measured; and 2) changes in luminescence from intact hepatocytes loaded with the Ca$^{2+}$-sensitive photoprotein aequorin were recorded. It was also observed that, although 1,4,5-inositol trisphosphate (IP$_3$), guanosine-5-trisphosphate, and arachidonic acid all induced a significant release of 45Ca$^{2+}$ from permeabilized swine hepatocytes, only the quantities of 45Ca$^{2+}$ released by IP$_3$ were significantly greater for the hepatocytes prepared from the animals susceptible to MH. These data indicate an abnormal Ca$^{2+}$ homeostasis in hepatocytes isolated from swine susceptible to MH, which supports the hypothesis that membrane systems from multiple organs may be affected in this genetic disorder. (Key words: Anesthetic, volatile: halothane. Animal: swine. Endoplasmic reticulum: 45Ca$^{2+}$ uptake and release. Genetic disorder: malignant hyperthermia. Intracellular [Ca$^{2+}$]: aequorin luminescence. Liver: isolated hepatocytes.)

EPISODES OF MALIGNANT HYPERThERMIA (MH) can be initiated in genetically predisposed humans and swine by administration of volatile anesthetics such as halothane. These life-threatening episodes are primarily characterized by generalized muscle spasms (i.e., contractures), tachycardia, increased core temperature, myoglobinuria, increased creatine phosphokinase levels, and/or cardiac arrest.\(^1\) Numerous cellular membrane processes have been reported to be abnormally regulated in humans and swine susceptible to MH.\(^1\)–19 It is believed that abnormal regulation of the intracellular Ca$^{2+}$ concentration ([Ca$^{2+}$]) within skeletal muscle, leading to contractures and eventual hypermetabolism, is the process of primary significance in episodes of MH induced by volatile anesthetics.4,6,9,11,20–22 The exact mechanism by which various so-called triggering anesthetics increase the release of Ca$^{2+}$ has not been established, although the following have been reported: 1) the Ca$^{2+}$-release channel (i.e., ryanodine receptor) of the sarcoplasmic reticulum is defective in MH9,11,23–28; and 2) the phospholipid and fatty acid profiles of membranes from both cardiac and skeletal muscle may be altered (i.e., secondarily).29

The ryanodine-sensitive calcium-release channel has been considered to be primarily localized in muscle, but recent studies have indicated that ryanodine binding sites also exist in brain and liver microsomes.30,31 Thus, it is of interest to determine whether abnormal regulation of [Ca$^{2+}$], induced by halothane, is a common defect in cells other than those from skeletal muscle fibers isolated from swine susceptible to MH. In the current study, we set out to determine whether Ca$^{2+}$ mobilization was different in hepatocytes prepared from swine susceptible to MH compared with their normal counterparts. We observed significant enhancement of the effects of halothane on Ca$^{2+}$ mobilization within hepatocytes isolated from swine susceptible to MH compared with those from normal animals.

Materials and Methods

ANIMALS

This protocol was approved by the Institutional Animal Care and Use Committee. Swine were obtained from a special breeding program at the University of Minnesota. Normal swine were mongrels, and swine susceptible to MH were purebred Pietrains. The susceptible animals all reacted to halothane (3% for 5 min or less) with stiffness or other signs of MH during a barnyard halothane test. Both the normal animals and those susceptible to MH were used before this in a study in which they were exposed to desflurane (1–2 MAC for 1 h).32 The animals were housed for a minimum of 9 days between studies, and the housing conditions, diet, and other factors were identical for each animal during this period. The animals were fasted on the morning of use, and the biopsy procedures were performed at the same time of day. The animals were anesthetized with sodium thiopental (20–40 mg/kg), and fresh specimens of skeletal muscle were

* Assistant Professor of Anesthesiology, Mayo Medical School.
† Research Fellow, Department of Pharmacology, Mayo Clinic.
‡ Research Associate, Department of Pharmacology, Mayo Clinic.
§ Visiting Scientist, Department of Pharmacology, Mayo Clinic.
‖ Professor of Pharmacology, Mayo Medical School.

Received from the Departments of Anesthesiology and Pharmacology, Mayo Clinic, Rochester, Minnesota. Accepted for publication October 31, 1990. Supported by Anaquest (P.A.I. and D.J.W.) and CA42286 (G.P.) from the General Medical Sciences Institute and the National Cancer Institute.

Address reprint requests to Dr. Iaizzo: Department of Anesthesiology, University of Minnesota, 420 Delaware Street, SE, Minneapolis, Minnesota 55455.
obtained for in vitro contracture testing. With the use of this test and/or the in vivo trigger of an episode of MH by succinylcholine, the animals were confirmed as normal or susceptible to MH. The detailed results of the in vitro contracture testing for these animals have been presented elsewhere. Briefly, bundles of muscle fibers from the latissimus dorsi were studied and, for the susceptible animals, a contracture of 200 mg or greater was recorded at caffeine concentrations of 2 mM or less and at 0.5% halothane (a positive test result as defined by the European Malignant Hyperthermia Group). In contrast, muscle bundles from the normal swine did not elicit contractures with amplitudes greater than 200 mg until caffeine concentrations were greater than 3 mM and they did not react to halothane (concentrations > 3%).

PREPARATION OF HEPATOCYTES

All chemicals and drugs were from Sigma Chemical Company, St. Louis, Missouri, unless indicated otherwise. With the animals under anesthesia and immediately after removal of the skeletal muscle, the whole liver was removed. Promptly, each lobe of liver was perfused with cold Dulbecco’s phosphate-buffered saline (PBS; Gibco Laboratories, Grand Island, NY) containing heparin (6,000 units/l) to prevent blood clotting. Hepatocytes were prepared by a two-step perfusion of one liver lobe from each animal (approximately 150 g of tissue). First, the lobe was perfused for approximately 10 min at 37°C with 2 l of Ca²⁺-free PBS containing 25 mM NaHCO₃, 12.5 mM 2-hydroxyethyl-piperazine-N’-2-ethanesulfonic acid (HEPES) (at pH 7.4), and 0.5 mM ethylene glycolbis(β-aminoethylether)N,N,N’,N’-tetraacetic acid (EGTA). Subsequently, the liver lobe was perfused for 20–25 min at 37°C with PBS containing 25 mM NaHCO₃, 12.5 mM HEPES (pH 7.4), 4 mM CaCl₂, and 1 g/l collagenase B (Boehringer Mannheim, Mannheim, Germany). Both perfusion media were gassed with 95% O₂ and 5% CO₂. The collagenase-digested liver tissue was gently minced and resuspended in a Krebs bicarbonate buffer containing 110.0 mM NaCl, 4.0 mM KCl, 1.0 mM KH₂PO₄, 1.2 mM MgSO₄, 2.5 mM CaCl₂, 24.0 mM NaHCO₃, and 25.0 mM HEPES. Hepatocytes were separated from tissue debris by filtration through a 250-μm nylon mesh and collected by centrifuging at 800 × g for 2 min at 4°C before being washed once with Krebs bicarbonate buffer. The hepatocytes were then resuspended in Dulbecco’s modified Eagle’s medium (DMEM; Gibco) to a concentration of 6 × 10⁶ cells/ml, at which time the approximate viability was estimated to be 80% by trypsin blue exclusion. The approximate yield of hepatocytes was 100 × 10⁶ cells/150 g tissue.

⁴⁵Ca²⁺ RELEASE BY PERMEABILIZED HEPATOCYTES

Isolated hepatocytes were washed twice by centrifugation at 800 × g for 4 min with uptake buffer (140 mM KCl, 10 mM NaCl, 2.5 mM MgCl₂, and 10 mM HEPES/KOH [pH 7.0]) and then incubated at 37°C for 20 min in uptake buffer containing 0.005% saponin. The saponin was removed by washing the cells three times in saponin-free uptake buffer. The degree of hepatocyte permeability induced by the saponin treatment, measured by trypan blue penetration, was greater than 90% for each liver preparation studied (n = 6). The cell concentration was determined on a hemocytometer and adjusted with buffer to obtain a final concentration of 5 × 10⁶ cells/ml.

An aliquot of hepatocytes was incubated at 37°C with two volumes of uptake buffer containing 5% polyethylene glycol, 0.5 mM 2,4-dinitrophenol, 16 μM antimycin A, 2 μg/ml oligomycin, 1.5 mM adenosine 5’-triphosphate (ATP), 3 mM creatine phosphate, 50 μg/ml creatine phosphokinase, and 50 μM CaCl₂. The free [Ca²⁺] of this solution was buffered to 100 nM by EGTA. Aliquots (100 μl) of cells were removed at various times to determine the rate of ⁴⁵Ca²⁺ uptake. The cells were collected on a vacuum filter system (VFM 1; Amicon, Danvers, MA) with the use of glass fiber filters (Whatman GF/A, Maidstone, England) and immediately washed four times with uptake buffer containing 1 mM LaCl₃ (which is considered a potent Ca²⁺ channel-blocking agent used to minimize any additional release of Ca²⁺ from internal stores). The filters were removed and placed in scintillation vials to which 0.5 ml of a digestion solution containing 0.1 N NaOH, 2% Na₂CO₃, and 1% sodium dodecyl sulfate was added. After a 1-h incubation at 55°C, 10 ml of liquid scintillation cocktail (Ultima Gold, Packard, Downers Grove, IL) was added and radioactivity determined.

When the uptake of ⁴⁵Ca²⁺ by the hepatocytes at 37°C had reached a maximum (approximately 8 min), the effects of various agents on ⁴⁵Ca²⁺ release were determined. First, an initial 100-μl sample was removed from the incubation mixture. Fifteen seconds later the releasing agents were added to the incubated hepatocytes, and 45 s later a second sample was collected. The amount of ⁴⁵Ca²⁺ release was determined as the percentage of ⁴⁵Ca²⁺ remaining at 9 min, relative to the amount of ⁴⁵Ca²⁺ within the cells sampled after 8 min. For a given preparation, all release values were corrected for either additional uptake or spontaneous release of ⁴⁵Ca²⁺ that may have occurred between the 8- and 9-min sample periods. The releasing agents were added as dilutions of uptake buffer and were as follows: 1) halothane (Ayerst Laboratories, New York, NY) as dilutions of a saturated aqueous buffer (~12% or ~2.6 mM halothane); 2) 10 μM 1,4,5-inositol triphosphate (IP₃); 3) 10 μM guanosine 5’-triphosphate (GTP); and 4) 100 μM cis-5,8,11,14-eicosatetraenoic acid (C₂₀:₄, arachidonic acid). The final concentration of halothane in the incubation solutions was determined by gas chromatography, and the values for a given dilution were reproducible (±0.2% halothane).
The absolute amount of 45Ca$^{2+}$ uptake by the hepatocytes was determined with the use of the calculation described by Gill and Chuen. 27 Individual experiments were conducted without the examiners' prior knowledge (i.e., in a blinded fashion) of the genetic status of the animal. The radioactivity measurements were obtained 12–14 h after sampling; thus, actual release information was not available at the time of sampling.

$[\text{Ca}^{2+}]_{t}$ Measurement in Intact Hepatocytes

The aequorin loading technique was a modification of methods previously used to incorporate aequorin into rat hepatocytes. 44 A suspension of fresh hepatocytes, 5×10^6 cells/ml from either a normal animal or one susceptible to MH, was washed three times by centrifugation at 800 $\times g$ for 30 s in a 135 mM NaCl, 4 mM KCl, 11 mM glucose, and 0.5 mM potassium phosphate buffer (ϕH 7.4), at 4°C. The final wash buffer also contained 1 mM EGTA. The hepatocytes were then suspended in 0.5 ml of solution containing 5×10^{-5} M aequorin (purchased from Dr. J. Blinks, Mayo Clinic, Rochester, MN), 0.15 M KCl, and 50 mM HEPES (ϕH 7.4), and incubated with gentle shaking for 10 min at 4°C before centrifugation at 800 $\times g$ for 10 s. The cells were then suspended in DMEM containing 10% fetal calf serum and plated at 5–6 $\times 10^6$ cells per 35-mm culture dish (Becton Dickinson, Lincoln Park, NJ). The hepatocytes were maintained for 20–24 h at 37°C and gassed with humidified 95% air and 5% CO$_2$. Three hours before use, the cells were incubated in DMEM without fetal calf serum.

An estimate of $[\text{Ca}^{2+}]_{t}$ was made by recording the light emission from serum-deprived aequorin-loaded cells. Culture dishes containing the aequorin-loaded hepatocytes were placed in a temperature-controlled holder at 37°C over a radiofrequency interference-shielded photomultiplier tube (9655QA; Thorn EMI, Fairfield, NJ) in a light-tight chamber. The change in current resulting from the emission of photons was converted to a voltage. All signals were then recorded with a strip chart recorder. At the end of each experiment, the cells were lysed with 1 ml of 1% Triton X-100 containing 5 mM CaCl$_2$ and the total light signal integrated. Changes in $[\text{Ca}^{2+}]_{t}$ were estimated with the use of the methods reported previously. 38,39 In this method the integral of the light signal (L) obtained during the Triton X-100 exposure was multiplied by the peak-to-integral ratio for aequorin (approximately 2.6 s$^{-1}$ at 37°C) to obtain a calculated peak intensity (L$_{\text{max}}$) that would have been observed had all the aequorin within the hepatocytes been discharged homogeneously and instantaneously. For each culture dish studied, a ratio of the resting or stimulated light emission to L$_{\text{max}}$ was calculated and compared with an aequorin Ca$^{2+}$ concentration–light emission curve which was constructed assuming an intracellular free Mg$^{2+}$ concentration of 1 mM.39

When the resting levels of aequorin luminescence were considered stable, the effects of halothane on $[\text{Ca}^{2+}]_{t}$ were determined. As before, the halothane was added as various dilutions of a saturated aqueous buffer, and the final concentrations of halothane in the incubation solutions were determined by gas chromatography. 35 A minimum of triplicate determinations were made for each preparation of hepatocytes at each concentration of halothane.

Statistical Analysis

Statistical significance of the data was determined with the use of either a two-way analysis of variance (e.g., for the halothane dose response data) or a Student's t test. With the use of these analyses, a P value < 0.05 was considered significant.

Results

45Ca$^{2+}$ Uptake

The uptake of 45Ca$^{2+}$ by saponin-permeabilized swine hepatocytes was maximal after 7 to 10 min of incubation. A 45Ca$^{2+}$ uptake curve for saponin-treated hepatocytes from a normal swine is shown in figure 1. There was no difference in the apparent uptake of 45Ca$^{2+}$ by the hepatocytes isolated from normal swine, compared with those prepared from swine susceptible to MH. Between the 8- and 9-min time periods, for either type of hepatocyte preparation, there was minimal release and/or additional uptake of the 45Ca$^{2+}$. Between the two groups, the mean responses for all control experiments (i.e., no releasing agent added) were not significantly different: the values were $-1.8 \pm 10.6\%$ ($n = 14$; mean \pm SD) for the hepatocytes from the normal animals and $-1.4 \pm 9.3\%$ ($n = 15$) for those from the susceptible animals (indicating a slight 45Ca$^{2+}$ uptake in both cases). Thus, it was reasonable to investigate the effects of the putative releasing agents on the release of the 45Ca$^{2+}$ between the 8- and 9-min time periods.

45Ca$^{2+}$ Release

Halothane induced a reproducible, concentration-dependent release of 45Ca$^{2+}$ from hepatocytes of both normal animals and those susceptible to MH. Figure 2 shows the mean values of 45Ca$^{2+}$ release and regression lines fit to the data. There were three animals in each group. Halothane induced a significantly greater release of 45Ca$^{2+}$ at all concentrations in hepatocytes prepared from the animals susceptible to MH (fig. 2).

The putative second messengers IP$_3$, GTP, and arachidonic acid induced significant releases of 45Ca$^{2+}$ in saponin-treated hepatocytes from normal swine and those susceptible to MH ($P < 0.001$) (fig. 3). However, only the 45Ca$^{2+}$ release induced by IP$_3$ was significantly greater in
the hepatocytes prepared from the animals susceptible to MH ($P < 0.001$): $23 \pm 6\%$ ($n = 15$) for those from normal swine versus $33 \pm 9\%$ ($n = 15$) for those prepared from the swine susceptible to MH (mean ± SD).

INCREASES IN INTRACELLULAR [Ca$^{2+}$] WITHIN INTACT HEPATOCYTES

The estimated resting [Ca$^{2+}$]$_i$ was not significantly different for the hepatocytes prepared from the two groups of animals, and they were $0.16 \pm 0.04 \mu M$ ($n = 12$) for the normal swine and $0.15 \pm 0.07 \mu M$ ($n = 14$) for the animals susceptible to MH (mean ± SD).

The administration of halothane caused transient increases in [Ca$^{2+}$]$_i$ in hepatocytes prepared from both normal and susceptible animals. The amplitudes and overall areas of the Ca$^{2+}$ transients were dose-dependent and were larger for the hepatocytes prepared from an animal susceptible to MH ($P < 0.01$) (fig. 4). The calculated averages of the peak [Ca$^{2+}$]$_i$ amplitudes and normalized areas of

FIG. 2. The effects of halothane on 45Ca$^{2+}$ release in hepatocytes prepared from normal swine (open circles) and swine susceptible to MH (filled circles). The mean values (bars indicate SD) of anesthetic-induced release ($n = 15$ for three animals from each group) were plotted against the halothane concentration. At each halothane concentration (in vivo equivalents), significantly more 45Ca$^{2+}$ was released from the hepatocytes prepared from the animals susceptible to MH ($*P < 0.05$ and $**P < 0.001$). Regression lines were fit to the data: the correlation coefficients were 0.997 for the data from the normal swine and 0.916 for the susceptible group.

FIG. 3. The release of 45Ca$^{2+}$ from hepatocytes prepared from normal swine and those susceptible to MH, induced by several agents considered important in intracellular second messenger systems. Mean values (and SD) were derived from data obtained from hepatocytes prepared from three normal animals (open bars) and three animals susceptible to MH (hatched bars). Only the release of 45Ca$^{2+}$ induced by IP$_3$ (10 μM) was significantly different (*) between the two types of preparations ($P < 0.001$). Arachidonic acid (C$_{20:4}$, 100 μM) and GTP (10 μM) induced significant ($P < 0.001$) but similar releases of 45Ca$^{2+}$ in hepatocytes prepared from both types of animals.
FIG. 4. Larger transient increases in \([\text{Ca}^{2+}]_i\) induced by halothane in intact hepatocytes prepared from swine susceptible to MH. Swine hepatocytes were loaded with aequorin using a low Ca\(^{2+}\) centrifugation method and were plated in culture dishes for at least 20 h before study. Each set of records represents data recorded for groups of cells prepared from the same liver. (Top) The response of hepatocytes prepared from a normal animal to increasing concentrations of halothane. (Bottom) Responses recorded from cells prepared from an animal susceptible to MH. The increasing halothane concentrations were approximately 0.5, 1, 2, and 6\% (or approximately 0.11, 0.22, 0.44, and 1.32 mm) respectively. The arrows indicate the onset of halothane administration.

The recorded \([\text{Ca}^{2+}]_i\) transients after the administration of various doses of halothane are provided in Table 1. When all data are averaged together, the peak \([\text{Ca}^{2+}]_i\) amplitudes and normalized areas were, respectively, 1.3- and 3.1-fold greater for the responses recorded from the hepatocytes prepared from swine susceptible to MH. Although the durations of the \([\text{Ca}^{2+}]_i\) transients were similar (fig. 4), the larger areas for those recorded from the susceptible animals indicate that the overall amount of \([\text{Ca}^{2+}]_i\) that was released was much greater.

<table>
<thead>
<tr>
<th>Table 1. Peak Amplitudes and Normalized Areas of the ([\text{Ca}^{2+}]_i) Transients Detected from Aequorin-loaded Intact Hepatocytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{Halothane (%)}</td>
</tr>
<tr>
<td>\text{Peak amplitude} ([\text{Ca}^{2+}]_i) (\text{\mu M})</td>
</tr>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

Normalized area \((\text{mV} \cdot \text{ms} \cdot \text{L}_{\text{max}}^{-1})\)				
0.5	3	6.4 \pm 2.9	4	24.7 \pm 17.5
1	3	9.0 \pm 7.5	3	11.5 \pm 22.0
2	3	105.7 \pm 40.1	3	224.2 \pm 53.9*
6	5	333.8 \pm 92.9	3	641.1 \pm 69.3*

The peak amplitudes and areas of the \([\text{Ca}^{2+}]_i\) transients were obtained by digital analysis of records of the original strip chart data. The peak \([\text{Ca}^{2+}]_i\) were estimated using the methods previously reported.\(^{38,39}\) The areas of the \([\text{Ca}^{2+}]_i\) transients (mV \cdot s) were normalized by dividing by the \text{L}_{\text{max}} determined in each experiment. Values are mean \pm SD of \text{n} determinations. Halothane concentrations (in vivo equivalents) were determined by gas chromatography.

* Significantly different between the groups at \(P \leq 0.01\).

Discussion

We have previously reported that halothane and IP\(_3\) each produced a significant release of \(^{45}\text{Ca}^{2+}\) from the nonmitochondrial stores of saponin-permeabilized rat hepatocytes.\(^{34}\) In addition, we reported that volatile anesthetic agents, in a dose-dependent manner, induced transient increases in \([\text{Ca}^{2+}]_i\) in intact rat hepatocytes that were considered nontoxic.\(^{40}\) Similarly, in the current study, halothane caused the release of \(^{46}\text{Ca}^{2+}\) in a dose-dependent manner from saponin-permeabilized swine hepatocytes. However, the \([\text{Ca}^{2+}]_i\) mobilization induced by both halothane and IP\(_3\) was enhanced in hepatocytes prepared from swine susceptible to MH, compared with those from normal swine. Furthermore, the amplitudes of the calcium transients induced by halothane (monitored by the use of aequorin) were larger in hepatocytes prepared from swine susceptible to MH. These data support the hypothesis that the mobilization of intracellular \([\text{Ca}^{2+}]_i\) within hepatocytes is affected in MH.

Most reports on MH in which \([\text{Ca}^{2+}]_i\) regulation has been studied in cells other than skeletal muscle have focused on cells that may be useful in the development of noninvasive tests to determine susceptibility to MH. For example, abnormal \([\text{Ca}^{2+}]_i\) regulation has been reported to occur in red blood cells,\(^{16}\) platelets,\(^{2}\) and lymphocytes,\(^{7,8,13}\) isolated from humans or swine susceptible to MH. Unfortunately, these findings, as they relate to our understanding of the pathophysiology of MH, have been deemphasized because identified differences were not reliable in determining susceptibility to MH. Other reports have described abnormal cellular functions, not directly related to the regulation of \([\text{Ca}^{2+}]_i\), in a variety of cell types.\(^{2,3,6,10,12,14,17,19}\) For example, in a recent study of
liver cells, Dutlie et al. reported that microsomes from MH-susceptible swine have an enhanced occurrence of free radical-mediated lipid peroxidation. Nevertheless, a generalized alteration in regulation of \([Ca^{2+}]\) and other specific cellular functions in multiple organ systems within animals or humans susceptible to MH is an appealing hypothesis to explain the reported lower tolerance to physical or chemical manipulation of humans or swine susceptible to MH.\(^4\)\(^{41}\)

It has been reported recently that the calcium-release channel (i.e., the ryanodine receptor) located in the sarcoplasmic reticulum of skeletal muscle is defective in both swine and humans susceptible to MH.\(^{11}\)\(^{25}\)\(^{28}\)\(^{28}\) The calcium-release channel is considered a tetrameric assembly of subunits with molecular weights of approximately 560,000.\(^{42}\)\(^{48}\) It is suggested that a genetic defect of this channel is responsible for the abnormal regulation of \([Ca^{2+}]\) that occurs within skeletal muscle in MH.\(^{9}\)\(^{11}\)\(^{23}\)\(^{28}\)\(^{28}\) However, the ryanodine receptor is only a candidate gene, and other possibilities have been described.\(^4\)

Formerly, this ryanodine-sensitive channel was considered to exist primarily in the sarcoplasmic reticulum of skeletal, cardiac, and smooth muscle. Recently, it has been reported that ryanodine will bind to sites within brain and liver microsomes, presumably to calcium channels.\(^{50}\)\(^{51}\) The enhanced mobilization of intracellular Ca\(^{2+}\) induced by halothane in hepatocytes prepared from MH-susceptible swine may result from the presence of the same defective calcium-release channel as in muscle. However, this needs verification and such information should be available soon, now that the complete cDNA sequence of the human skeletal muscle calcium-release channel has been determined.\(^{45}\) It is possible that the liver and skeletal muscle ryanodine receptors are not the same and perhaps are encoded on different chromosomes.

On the other hand, it has been shown recently that the IP\(_3\) receptor (InsP\(_3\)R) of endoplasmic reticulum (isolated from brain) has a considerable amino acid homology with the calcium-release channel of sarcoplasmic reticulum.\(^{45}\) The enhanced Ca\(^{2+}\) mobilization by IP\(_3\) and halothane that we observed for hepatocytes prepared from swine susceptible to MH might be explained if such channels are present and perhaps also function defectively in these hepatocytes. Consistent with the hypothesis that in MH there is an abnormal second messenger system that includes IP\(_3\), it was recently reported that a deficiency in inositol 1,4,5-trisphosphate phosphatase activity occurs in MH.\(^{46}\)

The data presented here may indicate that not all second messenger systems that involve modulations of \([Ca^{2+}]\) are altered in MH. For example, it has been reported that, in normal cells, volatile anesthetics, depending on the cell type, can either activate or inhibit guanine nucleotide binding proteins (G-proteins).\(^{34}\)\(^{47}\)\(^{48}\) The G-proteins are associated with the adrenoeceptor, which, in hepatoocytes, can be considered one of the primary control systems associated with Ca\(^{2+}\) mobilization.\(^{47}\) IP\(_3\) has been identified as the component of this system directly responsible for the release of Ca\(^{2+}\) from the endoplasmic reticulum.\(^{49}\)\(^{50}\) The data presented here indicated that IP\(_3\) was capable of stimulating the release of 45Ca\(^{2+}\) from nonmitochondrial stores of permeabilized swine hepatocytes but that its ability to do so was enhanced in hepatocytes isolated from swine susceptible to MH. In contrast, GTP and arachidonic acid induced similar releases of 45Ca\(^{2+}\) in the hepatocytes prepared from the two groups of swine.

Fluctuations in the concentrations of intracellular GTP were originally postulated to modulate \([Ca^{2+}]\) by a direct effect on the IP\(_3\)-sensitive Ca\(^{2+}\) channels (InsP\(_3\)R) located on the endoplasmic reticulum, but more recent findings suggest that the effect of GTP is considerably more complex.\(^{49}\)\(^{50}\) Thus, the action of GTP is not exclusively linked to the same pathway that includes the release of Ca\(^{2+}\) through G-proteins and IP\(_3\). Likewise, arachidonic acid is thought to induce the release of Ca\(^{2+}\) from endoplasmic reticulum through an alternate pathway. Increases in \([Ca^{2+}]\) are associated with the formation of arachidonic acid, which can be activated by receptor binding of bradykinin.\(^{51}\)\(^{52}\) On the other hand, the fact that GTP and arachidonic acid induced similar releases of 45Ca\(^{2+}\) in hepatocytes prepared from both groups of animals and that IP\(_3\) induced a greater release in the animals susceptible to MH may be used as additional evidence that GTP's effect on endoplasmic reticulum is somehow separate from that of IP\(_3\).\(^3\)

Nevertheless, the exact mechanism by which halothane causes the release of Ca\(^{2+}\) within swine hepatocytes is not known and several possibilities need be considered. For example, halothane may have a direct effect on the endoplasmic reticulum because a similar response has been reported for isolated vesicles of swine sarcoplasmic reticulum. However, halothane may also modify the function of the surface membrane and associated second messenger systems. It has been reported that various properties of the surface membrane are altered in MH.\(^{6}\)\(^{11}\)\(^{17}\)\(^{19}\)

It is important to consider how information obtained from the animal model for MH, the swine, relates to the human form of this disorder. Although most would agree that the swine is the best animal model for MH, there is question as to whether or not the genetic defect related to the porcine MH syndrome is somehow more complex. Gronert summarized that MH inheritance in swine may be best described as multifactorial,\(^{53}\) whereas in humans the genetic defect is considered to be isolated within the DNA sequence for the calcium-release channel.\(^{25}\)\(^{25}\)\(^{27}\) In contrast, we recently described that when the German Landrace porcine model of MH was studied by \textit{in vitro} contracture testing and methods from the field of food science, the mode of inheritance was considered the same.
as in humans, autosomal dominant.

Regardless of the mode, this then raises the question as to what type of animal would be an appropriate control for experiments such as the one described here. A littermate of a susceptible animal that was classified as normal by an in vivo halothane challenge and/or by in vitro contracture testing could, in fact, have a partially defective genome associated with, but not primary to, MH. This type of animal may be an inappropriate control. On the other hand, if the control group is chosen as a pure-bred strain of swine (e.g., Yorkshire), the genotype of certain traits unrelated to MH but associated with cellular processes being investigated (i.e., Ca²⁺ mobilization in hepatocytes) may be significantly different from that of the MH group, thus also rendering this group of animals as questionable for use as controls. Nevertheless, when trying to determine the relevance of information obtained from swine studies to humans or *vis a versa*, one must remember that humans may best be described as mongrels. One might contend that mongrel swine may be the best control population because the study population should contain a wide spectrum of variability (including mutations related to MH but not related to in vivo or in vitro detection). In the current study, mongrel animals were used; hence, one might argue either for or against this being an inherent limitation of this study.

In conclusion, the studies described here were interpreted to indicate that an abnormal Ca²⁺ homeostasis exists in hepatocytes isolated from swine susceptible to MH, which supports the hypothesis that membrane systems from multiple organs are affected in this genetic disorder. In addition, Ca²⁺ release from the endoplasmic reticulum of hepatocytes may be induced through more than one pathway and/or population of channels, not all of which might be altered in MH. Additional studies will be required to identify the mechanism(s) governing the abnormal regulation of [Ca²⁺]i thought to exist in hepatocytes from MH-susceptible swine.

The authors thank Dr. R. Palahniuk for his comments.

References

5. Hofmann JG, Buttner C, Till U: Sensitivity of the adenine nu-

22. Ohnishi ST, Taylor SR, Gronert G: Calcium-induced Ca²⁺ release from sarcoplasmic reticulum from malignant hyperthermia and normal pig muscle. FEBS Lett 161:103–107, 1985
50. Gill DL, Ghoch TK, Mullaney JM: Calcium signalling mechanisms in endoplasmic reticulum activated by inositol 1,4,5-trisphosphate and GTP. Cell Calcium 10:363–374, 1989