treat ing vomiting and aspiration during anesthesia... The administration of an emetic in early labor to the woman who has recently eaten solid food has been practiced in this community. Gastric evacuation by induced emesis, when carefully executed, might prevent the postanesthesia vomiting and aspiration of particulate matter... The bronchopneumonias... did not prove a cause of serious illness and no fatalities resulted. Chemotherapy by sulfanomide drugs was apparently not effective. Roentgenologically, the problem was one of differential diagnosis, requiring differentiation from pulmonary tuberculosis, sarcoidosis, other pneumonias, pulmonary edema, and atelectasis." 7 references.

J. C. M. C.

"In the actual technique of combining pentothal-cyclopropane, we have various procedures. Sometimes, we use pentothal for induction only... The effect of the pentothal lasts ten to fifteen minutes. As cyclopropane is synergistic with pentothal, the quantity of cyclopropane needed will be reduced in proportion to the effect and duration of the dose of pentothal given at the beginning. In cardiac cases, oxygen is given before the pentothal. A second method is to begin and continue with pentothal during the greater part of the operation, but to finish off with cyclopropane-oxygen. In this way, the quantity of cyclopropane used is very small... Still another manner of combining pentothal-cyclopropane is to begin and maintain anaesthesia with cyclopropane holding the pentothal as a mobile reserve. Thus, we may inject the barbiturate if the period of excitement is too long; to secure good relaxation for the closure of the peritoneum; or during the anaesthesia if the patient shows signs of cardiac arrhythmia, such as bradycardia or tachycardia. Here, pentothal does not suppress the arrhythmia due to the cyclopropane, but permits the anaesthetist to diminish considerably the concentration of cyclopropane in the bag and in the blood... Another method of combining pentothal-cyclopropane also proves useful at times. Induction is made with pentothal up to full surgical anaesthesia; then oxygen-cyclopropane is used to hold the subject at the desired level of anaesthesia. If, during the operation the patient becomes too light, we may deepen the anaesthesia either by injecting a small quantity of pentothal or by increasing the cyclopropane...

"We may use pentothal with nitrous oxide alone or with ethylene-oxygen alone, in the proportion of 50 to 70% of the anaesthetic gas. In this combination, the intravenous anaesthetic agent is used to reinforce the nitrous oxide or ethylene-oxygen in much the same way that the gas may be supplemented by the addition of ether... Pentothal-cyclopropane has certain disadvantages; it favours bleeding, increases operative shock in long operations, and requires careful postoperative supervision of respiration."

J. C. M. C.

"Experimental and clinical work have shown that living tissue is viable when completely asphyxiated (with tourniquet) for many hours if the temperature is kept between 33° and 40° F. Where the tissue is to be removed later (by amputation) this time may be extended to many weeks if necessary. This method of cooling tissue by an ice pack, with or without a tourniquet,
Abstracts

stops pain, controls and prevents the spread of infection in an extremity until the patient is properly prepared for surgery. . . . In trauma and embolism (arterial) the ice pack without tourniquet preserves the tissues of the extremity until collateral circulation develops which may make amputation unnecessary. . . . There is possible danger that cooling may lower the resistance of tissue so that infection occurs more frequently and spreads more rapidly when normal temperatures are restored. A number of uses for the procedure may be found such as the treatment of shock, burns of the extremities, insect and snake bites, and the preservation of skin grafts. . . . Anesthesia is minor in importance when compared to the value of careful and thorough preparation of the patient which the method affords.” 16 references.

J. C. M. C.

“If a regional nerve block (brachial plexus block) could be certain to be effective and to last as long as the surgical procedure required, it would be desirous. For this reason, continuous block of the brachial plexus is employed. . . . By using a blunt needle . . . of the malleable type, and inserting it to the lateral side of the subclavian artery in contact with the upper surface of the first rib and observing it pulsating with the artery, one may be assured that he is in the proximity of the plexus. Paraesthesias in the form of shooting pains down the arm caused by the needle contacting the plexus are helpful and give further assurance of proximity, but they are not essential to success with this technic. If procain is injected at this location in sufficient quantity, a successful infiltration of the plexus will result. The needle is blunted to prevent perforation of the artery while remaining in situ. By retaining the needle in this position, fractional injections of procain may be made through rubber tubing of convenient length attached to a syringe. The needle is retained in place by the use of a cork through which the needle is inserted before passing it through the skin in the supraclavicular area. . . . One per cent procain without adrenalin is used. . . . Infiltrating the skin area above the clavicle and aeromion and circularly about the axilla along its thoracic surface may also be done to block the superficial branches of the cervical plexus. . . . Twenty-seven patients requiring operation of the shoulder, arm, wrist and hand had brachial plexus block by the continuous method. Anesthesia was successful in all cases and it was not necessary to supplement any with general anesthesia. The duration of operations extended from one and one-half hours to four hours twenty minutes. The possible utility of the method in peripheral vascular conditions of the upper extremity is suggested.” 6 references.

J. C. M. C.

"An apparatus is so designed that the patient can administer to himself a mixture of air and 'Trilene' vapour. A rubber bulb, held and squeezed by the patient, propels air through a 'Trilene'-saturated wick fixed in a bottle. The resulting mixture is breathed by the patient by means of a special nasal inhaler. Delivery of the vapour depends entirely on the muscular action of the patient, and so overdosage is not possible. . . . Sense of hearing is not abolished, and so patient can be given instructions during the administration and is able to co-operate with the operator. . . .