CURRENT COMMENT AND CASE REPORTS

CURRENT COMMENT is a section in ANESTHESIOLOGY in which will appear invited and unsolicited professional and scientific correspondence, abbreviated reports of interesting cases, material of interest to anesthesiologists reprinted from varied sources, brief descriptions of apparatus and appliances, technical suggestions, and short citations of experiences with drugs and methods in anesthesia. Contributions are urgently solicited. Editorial discretion is reserved in selecting and preparing those published. The author's name or initials will appear with all items included.

REVERSE ACTION FORCEPS FOR EASY INSERTION OF ENDOTRACHEAL TUBES INTO CUFFS

This forceps is built on the principle of a nasal speculum action, using the same type of joint. Specula blades were not found strong enough to keep the cuff open for insertion of endotracheal tubes. The angle in the speculum was a point of weakness in the application of force. The illustrated forceps is strong enough and has long enough blades. It may be preferable to reverse the cuff and tube on the blades and work from the joint end of the forceps. The author prefers use as illustrated. A little powder on the blades and tube may be, but seldom is, necessary (figs. 1 and 2).

HENRY I. LIPSON, M.D.,

Hines, Illinois

FIGURE 1.

89
CORRESPONDENCE

INACTIVATION OF PENTOTHAL

To The Editor:

The short-acting barbiturates are known to be detoxified in the body, particularly by the action of the liver. Among the well-known representatives of this group is one, namely, pentothal (thiopentobarbital) which is a notable exception to this rule since resection of or damage to the liver does not influence the action of this drug in contrast to other barbiturates of this class. (Scheide, C. H., and Higgins, G. M.: Effect of Partial Hepatectomy on Action of Certain Barbiturates and Phenylurea Derivative, Am. J. M. Sc. 200: 264–268 [Aug.] 1940; Kohn-Richards, R., and Appel, M.: Barbiturates and the Liver, Anesth. & Analg. 20: 64–77 [Mar.–Apr.] 1941.) Removal of kidneys is also without effect upon the action of this barbiturate. While there is no doubt that pentothal is destroyed in the body, efforts to localize the primary site of its degradation have so far been unsuccessful. (Mason, G. M. C., and Beland, E.: Influence of Liver and Kidney on Duration of Anesthesia Produced by Barbiturates, Anesthesiology 6: 483–491 [Sept.] 1945).

We have conducted a series of experiments in which a 0.5 per cent solution of pentothal was made up in heparinized rabbit blood. This solution was incubated at 37.5°C for various periods of time. Intravenous injections of 0.5 cc. heparinized rabbit blood are tolerated by mice without symptoms. The hypnotic dose of an 0.5 per cent freshly prepared solution of pentothal in iced blood is 3 cc. per Kg. intravenously in mice. After fifteen minutes' incubation approximately 5 cc./Kg., after thirty minutes 6 cc./Kg., and after sixty minutes 7 cc./Kg., are necessary to produce sleep. This clearly indicates that blood inhibits the typical hypnotic action of pentothal and that the rapidity of destruction is in general agreement with the short action which pentothal exerts in the whole animal. Thus in thirty minutes ap-