A MODIFIED LARYNGOSCOPE TO MINIMIZE INJURY TO TEETH

The conventional laryngoscope with its steel blade is likely to injure or break teeth when the latter are impinged upon by the rigid blade. This is evidenced by the scratch marks on the laryngoscopic blades following their use in even a small number of cases. To diminish such traumatic injury to teeth, it was deemed desirable to replace the damaging part involved by some less injurious material.

Various types of laryngoscopes already exist which tend to accomplish the same purpose. In some, as in the “wiscope,” the blades are narrowed and closer together. In others, as in the “Bennett scope,” the upper blade is eliminated. These blades are used satisfactorily but intubation of the larynx is more difficult, especially for the student, because the soft parts of the mouth are less widely separated than when the “Guedel-type” laryngoscope is employed.

In order to maintain the optimal exposure obtained with the latter type of laryngoscopic blade, it was thought advisable to make a shelf-like depression in the area likely to produce dental injury. This portion of the blade, delineated by previous telltale scratch marks, was cleaved by dividing the region involved from the free edge of the blade to its lateral base and then
depressing the freed portion for about 7 mm.* (figs. 1 and 2). A softer piece of tissue may then be placed in the resulting gap. A strip of rubber or a wad of gauze is shaped to fill the depression and maintained in place by adhesive tape (fig. 3).

This modified laryngoscopic blade has

* The modification of the laryngoscopic blade was done, under our direction, by the Foregger Company.

been found to be satisfactory for endotracheal intubation. It affords good visualization of the larynx and better protection for the teeth than does the usual laryngoscope.

V. Traina, M.D.,
and C. L. Burstein, M.D.,
The Hospital for Special Surgery,
New York, N. Y.

A NONREBREATHING MASK

Some three years ago in this Journal (1) a description appeared of a nonresisting, nonrebreathing valve for use particularly in pediatric anesthesia. The attributes claimed at that time for this particular technic have been borne out by adequate clinical application (2).

(1) Efficiency. The thin, resilient, rubber flaps, attached by their center to the underlying seat, are leakproof and yet function capably in any position. Water vapor is not precipitated on them during use, and thus there is not the tendency for them to stick and develop resistance, as may occur with metal valve disks. The mechanical simplicity of the apparatus is a favorable asset.

(2) Minimal resistance. In tiny infants less than a month old, anesthesia can be maintained with this mechanism for two or three hours at a time without the development of fatigue. At a flow rate of 15