or traps would have to be designed so as not to increase either the dead space or the resistance.

These problems notwithstanding, monoethanolamine evidently has much to offer in the way of efficiency and capacity, a fact which has already been proved in industrial application.

Sufficient evidence has been gathered about the performance of monoethanolamine in absorbing carbon dioxide to warrant further investigation into the possibility of using this substance as a substitute for soda lime in closed-system anesthesia.

**SUMMARY**

Using a simple plate-type column, 1 liter of monoethanolamine will absorb 100 per cent of the carbon dioxide from a gas containing 96 per cent oxygen and 4 per cent carbon dioxide for approximately nine hours, when the gas flow rate is 5 liters per minute.

Using the same gas, at a flow rate of 10 liters per minute, the same amount of monoethanolamine will absorb 100 per cent of the carbon dioxide for approximately five hours.

Using a gas containing 8 per cent carbon dioxide at a flow rate of 10 liters per minute, monoethanolamine will absorb 100 per cent of the carbon dioxide for two and one-half hours.

**REFERENCES**


**NOTICE OF THE ANNUAL MEETING**

The American Society of Anesthesiologists, Inc.

October 14-18, 1957

Los Angeles, California