A Modified Laryngeal Cannula

BERNARD E. CAPPE, M.D.*

This communication describes a new version of a laryngeal cannula. The distal bulbous tip of a malleable Abraham laryngeal cannula was modified so that the one large opening was replaced by a small opening and surrounded by eight additional similar small openings placed as close to each other as was technically feasible without perforating the circumferential edge of the tip (fig. 1). This arrangement provides a showerlike spray. The overall length of the cannula is 15 cm., O.D. and I.D. of the shaft is 3.1 mm. and 1.8 mm., respectively, the diameter of the tip is 4.8 mm. and the diameter of the openings in the tip is 0.6 mm. When moderate pressure is exerted on the plunger of a 2 or 5 ml. syringe attached to the cannula, liquid will be sprayed in a cone shaped pattern for a distance of about 2 meters (72–82 inches). The angle of the cone is 45 degrees. The spray pattern of the modified cannula was compared with that of the Abraham cannula in a transparent model of a trachea and bronchi. Fluid spray from the modified cannula covered an almost total inner cylindrical area in the model for a distance of 15–20 cm., whereas the spray from the Abraham cannula covered narrow, spotty segments with skip areas for a distance of 20–25 cm. The advantage of this method of topical medication is that the target area of the glottis and larynx can be thoroughly sprayed by a single 3 to 5 ml. volume. Instillation may be made blindly, under indirect vision or with laryngoscopy. The tracheobronchial tree may be anesthetized for bronchoscopy by additional solution forcibly instilled within the larynx utilizing this modified laryngeal cannula.

The cannula may be bent parallel to the curve of a tracheotomy tube and used for the injection of saline or a solution of acetyl cysteine to liquefy secretions in the tracheostomized patient.

The cannula is manufactured by Becton, Dickinson & Co., Rutherford, New Jersey.

CASE REPORTS

Inadvertent Overheating of Blood for Transfusion

DAVID D. COHEN, M.D., AND LOUIS P. MAAS, M.D.*

Various devices are being used to warm blood for transfusion. The following case report involved use of one such device† which had been used with satisfaction. This apparatus is sealed at the factory and has a thermostatically controlled operating temperature set at 40° C. The manufacturer states that it will