ases, may be useful for the management of myasthenia gravis and the reversal of residual neuromuscular block.

The Effects of Halothane and Paired Electrical Stimulation on Isotonic Contractions of Isolated Heart Muscle. A. H. Goldberg, M.D., Ph.D., and W. P. C. Phear, B.Sc., Department of Anesthesiology, Boston University School of Medicine, Boston, Mass. These experiments were designed to determine the effects of halothane (H) and paired electrical stimulation (PS) on resting compliance (C) of heart muscle, and to evaluate the ability of PS to improve myocardial performance in the presence of H. Methods: Heart muscle preparations (37°C, pH 7.4) from 28 rats were studied in the presence and absence of H (0.6 per cent). The contractions were isometric and free-loaded. Changes in muscle length could be accurately detected to 10 μm. C was assessed during stretch of the muscle by a 0.75-gm load by measuring the rate of change of resting muscle length (d(l-r)/dt) direct correlation with C, with the excitation consisting of alternating 45-second periods of single stimulation (SS) and PS; or, with the mode of stimulation held constant (SS, PS, or no stimulation), by calculating Young’s Modulus (force per muscle cross-sectional area per relative length change; inverse correlation with C) at ½ (Y₁) and five (Y₅) minutes following the onset of muscle stretch. Results: With SS, H depressed the maximum rate and extent of isotonic shortening 55 per cent and 54 per cent. PS in the presence of H restored the contractility to the level found with SS in the absence of H, but not to the higher values found with PS in the absence of H. C was increased by PS alone (d(l-r)/dt: +36 per cent; Y₁: -6 per cent; Y₅: -11 per cent), and was decreased by H with SS (d(l-1)/dt: -35 per cent; Y₁: +10 per cent; Y₅: +14 per cent). PS in the presence of H reduced C (d(l-1)/dt) 9 per cent below the value obtained with SS and H. C was reduced by H even in the absence of all muscle contractions (Y₁: +11 per cent; Y₅: +17 per cent). Summary: Therefore, C is increased by PS and decreased by H. Since this effect of H occurs whether the muscle is being driven by SS, whether the contractility is restored to control conditions by PS, or even if the muscle is not contracting at all, it appears that H stiffens heart muscle by a direct action on the mechanism responsible for maintenance of C.

Why Do Chronic Alcoholics Require More Anesthesia? Y. H. Han, M.D., Department of Anesthesiology, St. Vincent’s Hospital and Medical Center of New York, New York, N. Y. It is well known that some chronic alcoholics require greater than usual amounts of both inhalational and intravenous anesthetics. In the present study, the minimum alveolar concentration (MAC) of halothane in chronic alcoholics was determined and compared with the normal MAC. The Ostwald solubility coefficients (lambda) of halothane in homogenized human adult brain tissues from normal individuals and chronic alcoholics were compared. Methods: Six normal healthy adult subjects and six chronic alcoholics who had been heavy drinkers for more than ten years were studied and mean MAC values of halothane of the two groups were compared. The MAC value of halothane was determined by the technique of Eger. The lambda of halothane was determined in vitro in brain tissue from six normal adults and twelve chronic alcoholics and mean values for the two groups were compared. All alcoholic subjects had died from causes other than brain diseases. Histopathologic changes of the same brain tissue specimens were also observed by a neuropathologist. Results: The mean MAC values of halothane in chronic alcoholics were increased significantly above normal. Significant increases in the mean lambda of halothane in chronic alcoholic brain white matter to air were also observed. These increases appeared to be mainly due to decreases in CNS excitability threshold, phospholipid demyelination, and increase in phospholipid content in the white matter of the alcoholic subjects. Summary: Chronic alcoholism is associated with demyelination and increase in phospholipid content in the central nervous system. These patients require higher concentrations of anesthetics for surgery. We suggest that the inhalational anesthetic agents with lower lipid