TABLE 3. Viral and Bacterial Studies

<table>
<thead>
<tr>
<th>Drug</th>
<th>pH</th>
<th>Viral</th>
<th>Bacteriological</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Cells Employed</td>
<td>Thiglycolate Media</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HEK BRC BSC</td>
<td></td>
</tr>
<tr>
<td>Atropine sulfate</td>
<td>3.69</td>
<td>Neg Neg Neg</td>
<td>Neg</td>
</tr>
<tr>
<td>Lidocaine hydrochloride</td>
<td>6.11</td>
<td>Neg Neg Neg</td>
<td>Neg</td>
</tr>
<tr>
<td>Phenylephrine hydrochloride</td>
<td>6.31</td>
<td>Neg Neg Neg</td>
<td>Neg</td>
</tr>
<tr>
<td>Succinylcholine chloride</td>
<td>7.52</td>
<td>Neg Neg Neg</td>
<td>Neg</td>
</tr>
<tr>
<td>Tubocurarine chloride</td>
<td>2.63</td>
<td>Neg Neg Neg</td>
<td>Neg</td>
</tr>
</tbody>
</table>

and low pH values and are handled with good aseptic technique.

Vials of succinylcholine and phenylephrine are apparently bactericidal, while tubocurarine and atropine are bacteriostatic.

The authors wish to thank Lt. Richard L. Bridwell, C.R.N.A., for his technical assistance.

REFERENCES

Simplified Versions of the Shunt and Oxygen Consumption Equations

D. A. P. STRICKLAND, B.Sc.

When blood traverses the pulmonary circuit some bypasses the gas exchange surfaces. This pulmonary physiologic shunt, or venous admixture effect, is due not only to certain inevitable anatomic pathways but also to a variable amount of ventilation-perfusion inequality. Because of the shunt a negative gradient in oxygen content exists between end-pulmonary-capillary blood and systemic arterial blood. Figure 1 shows the relationships in a conventionally stylized form.

* Recipients of a grant from the Medical Research Council.

Received from the University Department of Anaesthetics and Department of Clinical Measurement, Westminster Medical School, London, England.
SHUNT EQUATION

From the Fick principle it follows that the ratio of the pulmonary physiologic shunt to cardiac output may be represented by:

\[
\frac{\dot{Q}_s}{\dot{Q}_t} = \frac{C\dot{O}_2 - C\dot{O}_2}{C\dot{O}_2 - C\dot{V}_O}_2
\]

Though the arterial and mixed venous oxygen contents may be measured directly, they are often derived indirectly from electrode measurements of oxygen tension, pH, base excess and the hemoglobin content after reference to a standard oxyhemoglobin dissociation curve to obtain oxygen saturation.

End-pulmonary capillary samples are unobtainable. The assumption is made that the non-shunted blood (\(\dot{Q}_t - \dot{Q}_s\)) is in ideal equilibrium with the alveolar gas so that the ideal alveolar oxygen tension is equal to end-pulmonary-capillary tension. This tension is then used to calculate the end-pulmonary-capillary content indirectly. The oxygen content of whole blood is derived from the content expression:

\[
\text{total content} = \text{hemoglobin content} + \text{plasma content},
\]

\[
\text{content/100 ml} = \frac{1.390 \times \text{Hb} \times \text{So}_2}{100} + 0.0030 \times \text{Po}_2
\]

where

- 1.390 = oxygen capacity of hemoglobin in ml/g calculated for a molecular weight of hemoglobin of 64,468
- Hb = measured hemoglobin content in g/100 ml whole blood
- So_2 = oxygen saturation of hemoglobin
- 0.0030 = ml oxygen dissolved in the plasma of 100 ml whole blood of normal hemoglobin content/mm Hg applied oxygen tension at 38°C
- Po_2 = measured oxygen tension

The shunt equation is thus most often solved in the following unwieldy form:

\[
\frac{\dot{Q}_s}{\dot{Q}_t} = \frac{(0.0139 \times \text{Hb} \times \text{Sao}_2 + 0.003 \times \text{PAO}_2) - (0.0139 \times \text{Hb} \times \text{Sao}_2 + 0.003 \times \text{PAO}_2)}{(0.0139 \times \text{Hb} \times \text{Sao}_2 + 0.003 \times \text{PAO}_2) - (0.0139 \times \text{Hb} \times \text{Svo}_2 + 0.003 \times \text{Pvo}_2)}
\]

However, this may be simplified to:

\[
\frac{\dot{Q}_s}{\dot{Q}_t} = \frac{0.0139 \times \text{Hb} \times \text{Sao}_2 - \text{Sao}_2 + 0.003 \times \text{PAO}_2 - \text{PAO}_2}{0.0139 \times \text{Hb} \times \text{Sao}_2 - \text{Svo}_2 + 0.003 \times \text{PAO}_2 - \text{Pvo}_2}
\]

Dividing through by 0.003 results in the final expression, which is easier to handle:

\[
\frac{\dot{Q}_s}{\dot{Q}_t} = \frac{4.63 \times \text{Hb} \times \text{Sao}_2 - \text{Sao}_2 + (\text{PAO}_2 - \text{PAO}_2)}{4.63 \times \text{Hb} \times \text{Sao}_2 - \text{Svo}_2 + (\text{PAO}_2 - \text{Pvo}_2)}
\]

OXYGEN CONSUMPTION EQUATION

If cardiac output is measured by dye dilution, then oxygen consumption (\(\dot{V}_O_2\)) may be calculated from the Fick principle (cf fig. 1):

\[
\dot{V}_O_2 = \frac{\dot{Q}_t}{100} (Cao_2 - Cvo_2) \text{ ml/min}
\]

If the arterial and mixed venous oxygen contents are derived indirectly, then substituting the content expressions yields:

\[
\dot{V}_O_2 = \frac{\dot{Q}_t}{100} [(0.0139 \times \text{Hb} \times \text{Sao}_2 + 0.003 \times \text{PAO}_2) - (0.0139 \times \text{Hb} \times \text{Svo}_2 + 0.003 \times \text{Pvo}_2)] \text{ml/min}
\]
which can be similarly simplified to:

$$\dot{V}O_2 = 30 \dot{Q}_t [4.63 \text{Hb}(Sao_2 - SvO_2) + (Pao_2 - PVO_2)] 10^{-6} \text{ ml/min}$$

(ii)

CONCLUSION

Since ideal alveolar oxygen content is purely conceptual and values of arterial and mixed venous oxygen content are often derived indirectly, the fact that oxygen contents do not appear implicitly in equations (i) and (ii) is of little consequence.

The facility of both these equations may be increased by compiling tables of a range of Hb against 4.63 Hb and a range of \dot{Q}_t against $\dot{Q}_t (30 \times 10^{-6})$.

SYMBOLS

- $\dot{Q}_t =$ cardiac output in ml/min
- $\dot{Q}_s =$ pulmonary physiological shunt in ml/min
- $P_{VO_2} =$ ideal alveolar oxygen tension
- $P_{AO_2} =$ arterial oxygen tension
- $P_{CO_2} =$ mixed venous oxygen tension
- $C_{VO_2} =$ end-pulmonary-capillary oxygen content
- $C_{AO_2} =$ arterial oxygen content
- $C_{VO_2} =$ mixed venous oxygen content
- $S_{AO_2} =$ end-pulmonary-capillary oxygen saturation
- $S_{VO_2} =$ arterial oxygen saturation
- $S_{VO_2} =$ mixed venous oxygen saturation
- $\dot{V}O_2 =$ oxygen consumption in ml/min

REFERENCES

