Anesthesiology and Cell Division

In cellular biology particular interest is focused on the events that trigger mitosis. Duplication of deoxyribonucleic acid (DNA) is followed by mitosis (M), which is followed again by DNA synthesis (S). Two periods (G₁ and G₁₁) of varying length occur between M and S. We do not understand what happens during G₁ and G₁₁, because we have not been able to associate them with any specific activity. The triggering event is not known, but the most attractive hypotheses suggest: 1) cell division takes place when cellular dry mass has reached a critical level; 2) the nucleus controls growth and protein synthesis through ribonucleic acid (RNA) synthesis and transfer; 3) RNA synthesis parallels the amount of DNA present; 4) nuclear division, or separation of the chromatids, is the chief event initiating the increased rate of growth. Accordingly, the generation cycle of a cell is a continuum, and a delay in one phase may, for instance, be the result of a specific pharmacologic effect in the one or in a completely different phase.

In this issue of the Journal, in an interesting study by Bruce and Traurig, the anesthetic effect on the duration of the generation cycle of one group of cells is explored. The authors conclude that halothane in low clinical concentrations specifically prolongs a mammalian cell generation cycle in vitro. This conclusion is valid provided halothane does not delay or prolong uptake and distribution of 3H-thymidine, or decrease the transport of this precursor across the cell membrane. Labeling of the mitotic nuclei to the 80 per cent level rather than saturation might render the method more sensitive and provide additional information in this area. The data, unfortunately, do not permit further conclusions. In order to determine the duration of each phase in the cycle by 3H-thymidine labeling, it is necessary to count labeled nuclei in interphase as well as mitosis, and to characterize the slope of the initial ascending limb of the "pulse-labeling" curve with observations every 15 minutes. As a matter of fact, the percentage of labeled mitotic figures at one hour with 0.5 per cent halothane appears to be significantly smaller than that in the control group (table 1) suggesting that halothane prolonged the replacement of unlabeled with labeled mitotic figures. To detect an effect on one of the intramitotic phases, it is necessary to count the mitoses in each phase. Although the study may raise more questions than it answers, it is in itself an important contribution in an area that obviously deserves further study.

A few studies in rodents and the chicken embryo indicate that anesthetics are weak teratogens. The question is: where is the site of action? Do anesthetics arrest mitosis in metaphase as reported by a number of investigators, or do anesthetics interfere with the synthesis of DNA? We do not know, but the two possibilities need not be incompatible. We do not even know if mitotic changes and teratogenicity are related. Anesthetics affect mem-
brane permeability and transport, and could
deprive the embryo of sufficient nutrients at a
time when development is particularly rapid.
Mitotic inhibition, on the other hand, may lead
merely to cell death and not appear as a su-
sequent malformation. Until a relationship has
been established, we shall have to keep open
minds and be willing to consider mitotic
changes and teratogenic effects as unrelated
phenomena.

We now know that pharmacologic agents
may affect a series of receptor sites in the cell.
Thus, narcosis is only one of several cellular
effects of anesthetics. Others include de-
creased contractile force, inhibition of metab-
olism, interference with mitosis, and terato-
genicity. All these effects occur with concen-
trations used clinically. In the intact animal
convulsions or irreversible cell damage are un-
predictable complications frequently seen with
higher concentrations. We do not know the
sort or number of receptor sites involved;
therefore, there is a great need for more infor-
mation about all anesthetic effects. Ultimate-
ly, we should be able to take cellular effects such
as described by Bruce and Traurig into con-
sideration in clinical practice, because all cel-
lular actions must somehow influence the
course of any anesthetic procedure.

NIKKAN B. ANDERSEN, M.D.
Associate Professor
Department of Anesthesiology
College of Medicine
University of Florida
Gainesville, Florida

References
Zeuthen, E. (ed.): Synchrony of Cell Divi-
in press.
2. Lesher, S., Fry, R. J. M., and Kohn, H. L.: Age
and the generation time of the mouse du-
denal epithelial cell, Exp. Cell Res. 24: 334,
1961.
Proceedings of a Research Symposium, Seattle,
May 12-13, 1967. Baltimore, Williams &
Wilkins Co., 1968.
4. Andersen, N. B.: The effect of CNS depres-
sants on mitosis, Acta Anaesth. Scand. 10:
5. Andersen, N. B.: Anesthetic agents and cellular
sites of action. In Gravenstein, J. S. (ed.):
Pharmacology for the Preoperative Visit. Int.