
Pediatrics

PULMONARY FUNCTION IN CYSTIC FIBROSIS Eighteen children (mean age 8 years) with cystic fibrosis underwent studies of pulmonary diffusing capacity by the carbon monoxide method at rest, sitting, head down, and after exercise to exhaustion. In contrast to eight normal children of comparable ages, none of the children with cystic fibrosis were able to increase their diffusion rates for carbon monoxide in the head-down position or during severe exercise. Lung volumes, mechanics of breathing and gas mixing were normal in half of the children with cystic fibrosis. The inability of the child with cystic fibrosis to increase the diffusion rate with exercise or gravity represents a profound loss of adaptability, and may be responsible for the poor exercise tolerance, dyspnea, and cyanosis observed in these children during physical activity. Further studies will be necessary to determine whether the limitation of diffusion capacity results from loss of membrane surface area or from abnormalities in the pulmonary capillary bed. (Zelkowitz, P. S., and Giannonna, S. T.: Effects of Gravity and Exercise on the Pulmonary Diffusing Capacity in Children with Cystic Fibrosis, J. Pediat. 74: 393 (March) 1969.)

Surgery

GOODPASTURE'S SYNDROME Resolution of the pulmonary changes in Goodpasture's syndrome may occur after bilateral nephrectomy. Hemoptysis disappeared, infiltrates resolved, and arterial Pao increased from 51 to 90 torr in a group of patients in whom this operation was performed. (Siegel, R. R.: The Basis of Pulmonary Disease Resolution after Nephrectomy in Goodpasture's Syndrome, Amer. J. Med. Sci. 259: 202 (March) 1970.)