An Unusual Cause of Sudden Complete Airway Obstruction

P. J. JANSSEN, M.D.*

The causes of subacute or acute partial or total occlusion of the airways are numerous and generally well known. However, we recently encountered an unusual case, which is described below.

REPORT OF A CASE

A 5½-year-old boy who was severely cyanotic, with transposition of the great arteries and pulmonary hypertension, was scheduled for a Blalock procedure because of deterioration of his condition and gradual increases in hemoglobin (24.6 g/100 ml) and hematocrit (71 per cent). At the age of 2½ months, a Blalock-Hanlon procedure had been performed successfully. Since the pulmonary vascular resistance was practically equal to the systemic vascular resistance, total correction of the abnormality was considered impossible. Cardiac catheterization two months earlier had disclosed the pressures and hemoglobin saturations shown in figure 1. The pressures in systemic and pulmonary vessels were nearly equal, in the absence of a ventricular septal defect. Angiocardiograms confirmed the diagnosis of transposition of the great arteries without ventricular septal defect or pulmonary stenosis. An open ductus arteriosus could not be demonstrated.

After induction of anesthesia, the trachea was intubated and the patient was connected to an Enotröm respirator. Breath sounds were audible over both lungs, slightly less on the left than on the right. This did not change after readjustment of the endotracheal tube. The right pulmonary artery, right main bronchus, and inferior vena cava were dissected through a right posterolateral incision. On proceeding, we found that we could not cross-clamp both the right pulmonary artery and the right main bronchus, as ventilation then became totally impossible. Cardiac arrest occurred. After removal of the clamp the patient was successfully resuscitated.

Since these events might have been caused by inadvertent right endobronchial intubation (although it was unlikely, since after removal of the clamp breath sounds were audible over the left hemithorax), the endotracheal tube was withdrawn under direct vision and immediately reintroduced, the tip now being about 1 cm below the vocal cords. Breath sounds again were audible over the left lung and the right lung was seen to ventilate well. Once again, an attempt was made to cross-clamp the right pulmonary artery and the right main bronchus at the same time. Again, it immediately became impossible to ventilate the lungs, and the clamp was again removed.

The presence of blood draining from the site of operation into the left main bronchus could have been the causative factor (a very small amount of mucosangineous secretion was aspirated from the endotracheal tube), but good breath sounds were audible over the left lung and remained so when only the right main bronchus was occluded. This indicated passage of gases through the left main bronchus. Cross-clamping of the right main bronchus only was well tolerated by the patient, but when the right pulmonary artery was cross-clamped as well, the breath sounds on the left disappeared. This effect could be reproduced. Unfortunately a large tear occurred in the right pulmonary artery. Massive hemorrhage followed, with intractable cardiac arrest from which the patient could not be resuscitated in spite of vigorous efforts.

At autopsy the pertinent findings were: 1) transposition of the great arteries; 2) extreme dilatation of the pulmonary trunk, especially the right branches; 3) narrow aortic arch; 4) patent ductus arteriosus; 5) pulmonary vasculopathy, consisting of intimal fibrosis (right more than

* Chief, Cardio-anesthesiology, Department of Anaesthesiology (Head: J. Spierdijk, M.D.) of the University Hospital, Leyden, The Netherlands.
left), duplication of elastica interna (right more than left), and organized thrombi (left more than right). No indication of decreased patency of the left main bronchus was found.

DISCUSSION

Analysis of the operative events made it evident that cross-clamping the right pulmonary artery had led to complete obstruction of the left main bronchus. This might seem strange, considering the anatomic relations of the normal hilar structures (fig. 2), but it is not an unreasonable event if one considers the changes in the anatomic relationship of the various hilar structures owing to pulmonary hypertension with dilatation of the pulmonary arterial system (fig. 3).

While the pathogenesis of the pulmonary hypertension in this patient need not be discussed, the role of persistent polycythemia in patients with congenital cyanotic cardiac defects leading to intravascular thrombosis and consequent diminution of the total pulmonary vascular bed should be mentioned.4 The invariable presence in the pulmonary arterial vasculature of severe intimal fibrosis in patients more than 2 years old who have transposition of the great arteries and pulmonary hypertension5,6 should also be mentioned, since these abnormalities were also found at autopsy in our case.

As indicated in figure 3 (modified after Stanger),7 the gross anatomic changes in the left hilum due to pulmonary hypertension and dilatation of the pulmonary arterial system are (arrow a) compression of the anterosuperior area of the left main bronchus where it crosses the stem of the left pulmonary artery, and (arrow b) compression of the posterior wall of the left upper lobe bronchus where it is caught between the pulmonary artery supplying the left lower lobe and the last portion of the main left pulmonary artery. Compression of the left side of the trachea owing to craniomedial shift of the aorta by the dilated pulmonary arterial system (fig. 3, arrow c) is another possibility which may be revealed by bronchography. Although the compressive action of these anatomic changes on ventilation occurred in the left lung in our case, the same may hold true for the right lung in the absence of transposition of vessels in certain pa-

![Fig. 1. Data obtained by cardiac catheterization, indicating nearly equal pressures in the ventricles in the absence of a ventricular septal defect and of pulmonary stenosis. Encircled figures indicate hemoglobin saturations; the other figures indicate pressures.](image-url)
of the latter. In our patient, however, the caliber of the left pulmonary artery was smaller than that of the right pulmonary artery, and diffuse organized pulmonary vascular thrombosis was more pronounced in the left than in the right lung. These factors suggest that there must have been preferential flow of blood to the right lung. Occlusion of this relatively large flow by cross-clamping the right pulmonary artery must have dilated the left pulmonary artery enormously to obstruct the left main bronchus completely.

If complete cross-clamping of the right hilar structures is surgically necessary in such a case, the anesthesiologist could attempt to introduce a much smaller endobronchial tube into the left main bronchus prior to surgical cross-clamping of the right pulmonary artery. In children the technique certainly is not simple, and it would be largely a matter of trial and error to determine the size of the endobronchial tube. This approach to the problem seems to be the only one theoretically feasible. The danger of endobronchial hemorrhage with this technique is real in such a patient with an abundance of hypertrphied vessels of the bronchial circulation.

SUMMARY

A case of acute complete obstruction of the left main bronchus after cross clamping of the right pulmonary artery in a patient with a transposition of the great arteries and pulmonary hypertension is presented. A technique to circumvent this difficulty is suggested. Changes on chest roentgenograms suggestive of the presence of these abnormalities are described.

The author thanks the staffs of the Departments of Pediatric Cardiology, Thoracic Surgery, and Pathology for their cooperation, and Mr. J. Tinkelaerg for the drawings.

REFERENCES

vessels with extracorporeal circulation. Surg
ery 36:39-51, 1954
4. Rich AR: A hitherto unrecognized tendency to
the development of widespread pulmonary
vascular obstruction in patients with con-
genital pulmonary stenosis (tetralogy of Fal-
5. Ferencz G: Transposition of the great vessels:
Pathophysiologic considerations based upon a
study of the lungs. Circulation 33:232-241,
1966
6. Wagenknecht CA, Nauta J, Van der Schaar PJ,
et al: The pulmonary vasculature in complete
transposition of the great vessels, judged from
factors causing respiratory distress in acyan-
notic congenital cardiac disease. Pediatrics
43:769, 1969

Unusual Failure of an Oxygen Flowmeter

CHARLES G. RATTIG, M.D.*

Erratic behavior in the action of the oxygen
flowmeter was noticed in a Model 64-134 an-
esthesia machine manufactured by the Chi-
cago Anesthesia Equipment Company. At in-
dicated oxygen flow rates of less than 4-5
l/min, the rotometer bobbin behaved nor-
mally. When the flowmeter needle valve was
adjusted to increase oxygen flow rates, the
flowmeter bobbin bounced up and down er-
ratically. A delivered flow of more than 6-8
liters could not be obtained consistently.

The flowmeter was dismantled and the ro-
tometer tube cleaned with ether. The needle
valve was also checked for dirt or obstruction.
However, after reassembly and leveling, there
was no improvement in the behavior of the
flowmeter. It was then apparent that there
must be some obstruction distal to the oxygen
flowmeter. The metal couplings and tubing
leading from the flowmeter were sequentially
disassembled. At the first metal coupling con-
necting the output of the oxygen flowmeter to
the internal copper tubing system, a small
metal sphere resembling a BB shot was found.
The origin of this foreign body was not im-
mmediately apparent. However, it was evident
that the shot was acting as an intermittent ball
valve. At low oxygen flow rates, it would
allow the stream of oxygen to pass. At higher
flow rates, the turbulence of the gas in the
 coupling would propel the shot into the cen-
tral gas stream, where it would impinge upon
the central opening in the tubing coupling.
This opening was too small to permit the shot
to pass through it, but did act as an effective
valve seat.

In an attempt to locate the source of this
foreign body, the other flowmeters on the
same machine were disassembled. Other ro-
tometer bobbins were found to have identical
shots cemented within their hollow interiors.
Figure 1 is a photograph of the bobbin-sepa-

* Associate Anesthesiologist, Berkshire Medical
Center, Pittsfield, Mass. 01201.