Correspondence

Neostigmine Antagonism of Neuromuscular Block

To the Editor:—In their recent article, “Antagonism of d-Tubocurarine-, Gallamine-, and Pancuronium-induced Neuromuscular Blockades by Neostigmine” (Anesthesiology 37: 503–509, 1972), Miller, Larson, and Way state that comparison of the durations of action of two muscle relaxants requires knowledge of equipotency but that determination of the latter is impossible, since the dose–response curves are not parallel. We did determine the dose–response curves for d-tubocurarine and gallamine in humans and found them to be parallel (Ghoneim, M.M., et al., Can Anaesth Soc J 19:66–74, 1972). d-Tubocurarine in a dose of 2.5 mg/m² produced 27.47 ± 6.4 per cent blockade with a mean recovery time (50 per cent twitch height recovery) of 13.9 ± 2.7 minutes. Gallamine in a dose of 15 mg/m² produced 28.18 ± 4.3 per cent blockade with a mean recovery time of 14.8 ± 2.9 minutes. At a higher dose level d-tubocurarine produced a 62.6 ± 5.4 per cent blockade with a mean recovery time of 42.4 ± 1.3 minutes, while gallamine produced a 77.58 ± 3.6 per cent blockade with a 54.4 ± 3.6 minute recovery time. Our results support their contention that there is no justification for the belief that gallamine is a shorter-acting muscle relaxant than d-tubocurarine.

M. M. GHONEIM, M.D.
Associate Professor
Department of Anesthesia
University Hospitals
Iowa City, Iowa 52240

(Accepted for publication January 17, 1973.)

To the Editor:—We are pleased to receive support for our observation that the duration of action of gallamine is not shorter than that of d-tubocurarine. Our conclusions that dose–response curves for relaxants are not parallel was based on the work of Lund and Stovner, who observed steeper dose–response curves for alcuronium and pancuronium than for d-tubocurarine; they did not study gallamine. Although the studies of Ghoneim et al. suggest that the dose–response curves of d-tubocurarine and gallamine may be parallel, we have had some reservations concerning their methods. Ghoneim et al. studied only two doses of each drug. It is nearly impossible to prove either linearity or parallelism of dose–response curves obtained from only two doses. For example, the slope of their two-point dose–response curve of d-tubocurarine might have been radically altered had a third dose been studied (fig. 1). Apart from this simple mathematical consideration, Ghoneim et al. administered the larger dose of relaxant one hour after the smaller dose to the same patient. The depression of twitch height from the second, larger, dose of relaxant may represent a cumulative effect of the two doses. If this were true, dose–response curves would be steeper than they would be if only one dose of relaxant had been given to each patient. Ghoneim et al. observed mean times from relaxant administration to return of 80 per cent of control twitch height of 14.8 and 54.1 minutes for gallamine 15 mg/m² and 20 mg/m², respec-

![Fig. 1. Dose–response regression lines taken from Ghoneim et al. The triangles represent fictitious data inserted by this author. C represents d-tubocurarine, and G represents gallamine. Had a third dose been given with results as depicted, the slope of the d-tubocurarine curve would be flatter than that of the gallamine curve.](http://anesthesiology.pubs.asahq.org/pdfaccess.ashx?url=/data/journals/jasa/931554/)