Thrombogenesis Associated with Swan-Ganz Catheters

Paul F. Hoar, Ph.D., M.D.,* J. Gilbert Stone, M.D.,,* Anthony E. Wicks, M.D.,* Richard N. Edie, M.D.,† John V. Scholes, M.D.‡

With the technical assistance of Michael B. Minsky, M.S.§

The balloon-tipped, flow-directed, flexible pulmonary-artery (Swan-Ganz) catheter has gained clinical acceptance and increased usage since its introduction in 1970.

Occasional complications have been reported to occur with the use of this indwelling device. Pulmonary infarction related to thrombus formation in two patients has been reported. In another report, a massive thrombus extending from the tip of a Swan-Ganz catheter and obstructing the main pulmonary artery was stated to be a contributory if not the primary cause of death in a patient on the basis of postmortem examination.

Although thrombus adherent to the catheter has been occasionally observed, a systematic evaluation of this phenomenon has not been undertaken. Cardiac surgery affords a unique opportunity to examine Swan-Ganz catheters in situ when the right atrium is opened to establish cardiopulmonary bypass. This report relates our observations of thrombus formation on Swan-Ganz catheters placed immediately prior to induction of anesthesia and examined at operation.

METHODS

Swan-Ganz catheters were consecutively placed and examined in ten patients undergoing cardiac surgery.

* Assistant Professor of Anesthesiology.
† Assistant Professor of Surgery.
‡ Chief Resident, Department of Pathology.
§ Technical Director, Department of Anesthesiology.

Received from the Departments of Anesthesiology, Surgery and Pathology, College of Physicians and Surgeons of Columbia University, 630 West 168th Street, New York, New York 10032. Accepted for publication December 13, 1977. Supported in part by NIH Grant GM-00969.

Address reprint requests to Dr. Hoar.

The catheters were inserted immediately prior to induction of anesthesia and inspected at the time of cardiopulmonary bypass. The catheters were placed percutaneously via the internal jugular vein. After intravenous cannulation, a flexible steel guide wire was inserted through the cannula, the cannula removed and an obturator and introducer were threaded over the guide wire into the internal jugular vein. Upon removal of the guide wire and obturator, the introducer was flushed with 10 ml heparinized saline solution (1,000 units of heparin in 500 ml saline solution) and a 7F Swan-Ganz thermodilution pulmonary-artery catheter, also flushed and filled with 5 ml heparinized saline solution, was immediately placed through the introducer. The catheter was advanced to 20 cm, the balloon inflated, and the catheter floated into the most proximally achieved wedge position in the pulmonary artery during constant electrocardiographic and artery pressure monitoring. Following establishment of the wedge position, the catheter balloon was deflated to ensure that the Swan-Ganz catheter was not in a permanent wedge position. The appearance of a phasic pulmonary artery pressure tracing after balloon deflation provided confirmation of the catheter's position. The catheter balloon was only intermittently inflated when wedge pressures were recorded. Prior to induction of anesthesia, a hemodynamic profile that included heart rate

0003-3022/78/0600-0445$00.60 © The American Society of Anesthesiologists, Inc.
and rhythm, systemic arterial pressure, pulmonary arterial wedge pressure, and cardiac index was obtained. The pressures were measured by transducers; cardiac outputs were determined by thermal dilution technique, and all values recorded on a thermal tip chart recorder.

Anesthesia was induced with combinations of morphine sulfate (0.5–1.5 mg/kg), diazepam (5–20 mg), and nitrous oxide (50–70 per cent). Muscle relaxation was facilitated with d-tubocurarine (2 mg/kg) and respiration controlled to maintain Pco₂ 35–40 torr.

The chest was opened through a median sternotomy and heparin (90 mg/m²) administered to all patients 15 minutes prior to bypass. Atriotomy allowed temporary displacement of the Swan-Ganz catheter from the pulmonary artery and right ventricle, and inspection from the tip retrograde to the level of the right atrium.

RESULTS

Ten Swan-Ganz catheters were consecutively examined in seven men and three women at the time of cardiopulmonary bypass. Nine patients were to undergo coronary-artery surgery and one patient was to have both aortic and mitral valves replaced. The hemodynamic profile of the patients is shown in table 1. Five of the patients had cardiac indices below 2.5 l/min/m², but the remaining five had an average cardiac index of 3.10 l/min/m². Two patients were in atrial fibrillation and one had an elevated wedge pressure (25 torr). No patient was hypotensive, and all other hemodynamic variables were within normal limits. Every patient had a normal preoperative coagulation screen, consisting of prothrombin time, activated partial thromboplastin time, and platelet count.

The mean time from introduction of the catheter to final positioning was less than 2 min. The catheters were inspected 104 ± 6 (SE) min following insertion (table 2).

Thrombus was found on the surfaces of all catheters examined at surgery. The thrombi encapsulated the catheters, extending from the tip along the shaft (fig. 1). Thrombi removed from the catheters at operation had a mean length of 7.8 ± 1.2 (SE) cm and a mean weight of 222 ± 46.8 mg (table 2). The largest weighed 570 mg. Histologic examination of all removed thrombi demonstrated recent thrombus formation with lysis of erythrocytes, layering of leukocytes (forming lines of Zahn) and fibrin deposition. There was no statistical correlation between thrombus size and the hemodynamic status of the patient, the duration of catheter insertion, or the time to catheter inspection.

DISCUSSION

That thrombus formation occurs when any intravascular catheter is placed is not new information. Thrombi have been found on both indwelling arterial and central venous catheters.5–7 Massive thrombus formation secondary to Swan-Ganz catheterization was found post mortem in a patient who had had a catheter in place for a prolonged period before dying.4 In our series, however, the Swan-Ganz catheters were inserted one to two hours prior to inspection, yet substantial clots were seen along the catheter in all instances.

Factors that may contribute to thrombus formation on Swan-Ganz catheters must be considered. As part of

<table>
<thead>
<tr>
<th>TABLE 1. Hemodynamic Profile of Ten Patients Undergoing Cardiac Surgery in Whom Swan-Ganz Catheters Were Placed Prior to Anesthetic Induction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (Years)</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>SE</td>
</tr>
<tr>
<td>Range</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE 2. Details of Catheter Insertion and Thrombus Formation for Swan-Ganz Catheters Placed Prior to Anesthetic Induction in Ten Patients Undergoing Cardiac Surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion Time (Min)</td>
</tr>
<tr>
<td>--------------------------</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>SE</td>
</tr>
<tr>
<td>Range</td>
</tr>
</tbody>
</table>
the preoperative evaluation, every patient had a
coupling screen, which was normal in each case.
The introducers and catheters were flushed and filled
with heparinized saline solution prior to placement in
the internal jugular vein. All catheters were rapidly
"flaked" into the pulmonary artery by the flow-
directed technique, and no catheter was left in a
permanent wedge position. Although catheters were
not all placed with the same rapidity, thrombi were
found at operation when the total placement time
was less than a minute. The largest thrombus was
seen in a patient who was in atrial fibrillation
with evidence of congestive heart failure. Yet the
second largest thrombus was found in a patient with
no evidence of a low-output state. It may be that a
low-flow state enhances thrombus accumulation, but
this study did not yield evidence to support such a
correlation. In any event, patients with impaired
hemodynamics are the patients who most need Swan-
Ganz catheters for management.

Sawyer et al. have evaluated the thrombogenic
characteristics of commercially available catheters and
have found them all to induce thrombus formation
within hours of implantation in the central venous
circulations of dogs and man. The Swan-Ganz catheter
was not evaluated by Sawyer et al., but is constructed
of polyvinylchloride, which does initiate a thrombo-
genic response.

Heparin in low doses (40 units/kg) has been ad-
ministered systemically to help prevent thromb-
embolic complications during angiography. How-
ever, our preliminary studies have demonstrated that
preinsertion administration of such low-dose heparin
to patients prior to Swan-Ganz catheterization does
not prevent thrombus formation on these devices,
although thrombus size may be reduced.

Conclusions drawn from this study are: 1) The
thermodilation flow-directed Swan-Ganz catheter
induces thrombus formation in the central circulation
of a patient with either normal or impaired cardio-
vascular hemodynamics. 2) Thrombus formation
probably begins at the time of insertion and can be
demonstrated an hour following placement. 3) Thrombus
formation occurs despite the precautions of filling the introducer and catheter with heparinized
saline solution before introduction, rapid placement
of the catheter in the pulmonary artery, and not
allowing the device to assume a permanent wedge
position.

Despite these observations, no evidence of massive
pulmonary embolism (symptomatic or radiologic) has
been seen in any of our patients, although several
hundred Swan-Ganz catheters have been inserted with
the same technique. It is probable that the
thrombi formed did release emboli, but signs and
symptoms of small emboli may be clinically inap-
parent in the postoperative period following cardiac
surgery.

It is not the intent of this report to dissuade physi-
cians from placing Swan-Ganz catheters in patients
who may benefit from the information provided. In
any medical setting, where the management of
hemodynamic dysfunction requires intense monitor-
ing, the cost-benefit ratio seems to favor the use of
Swan-Ganz catheters. It is the intent of this report,
however, to call attention to the potential thrombo-
genicity of these devices. If other investigators con-
firm our consistent finding of thrombus adherent
to all Swan-Ganz catheters following placement, it
may be helpful to treat the catheter surface chemically
in order to render it less thrombogenic. However,
the effects of such treatment on the structural ma-
terial may affect the flexibility of the device, alter-
ing the physician's ability to position catheters rapidly
in the pulmonary artery.

The authors thank Mr. E. Kahn for his help in this study.

REFERENCES
1. Swan HJC, Ganz W, Forrester JS, et al: Catheterization of
the heart in man with the use of a flow-directed balloon
2. Buchbinder N, Ganz W: Hemodynamic monitoring. ANES-
THESIOLOGY 45:146-155, 1976
3. Fomel GA, Schabel SI, Hodges M: Pulmonary complications
of the flow-directed balloon tipped catheter. N Engl J Med
190:927-931, 1974
ciated with use of the Swan-Ganz catheter. Chest 65:
682-685, 1974
5. McDonough JJ, Altemeier WA: Subclavian venous thrombosis
secondary to indwelling catheters. Surg Gynecol Obstet
133:397-400, 1972
6. Walters MB, Stanger HAD, Rotem CE: Complications with
percutaneous central venous catheters. JAMA 220:1455-
1457, 1972
artery catheterization. ANESTHESIOLOGY 58:283-286, 1973
8. Sawyer PN, Stanyczewski B, Garcia L, et al: Experimental and
clinical evaluation of a new catheter material. Trans Am
Soc Artif Intern Organs 23:525-537, 1976
heparinization for femoral percutaneous coronary arterio-
10. Nishizawa EE, Wynaeda DJ, Ledinber D: Non-thrombogenic
surface-inhibiting platelet adherence. Trans Am Soc Artif
Intern Organs 19:13-18, 1973
11. Lindsay RM, Rourke J, Reid B, et al: Platelets, foreign sur-
faces and heparin. Trans Am Soc Artif Intern Organs 22:
292-295, 1976

§§ Personal communication, Edwards Laboratories, Santa Ana,
California.

¶¶ Personal communication, Battelle Laboratories, Columbus,
Ohio.