protruding about 5 cm beyond the distal end of the suction tubing. The sytlet and the tubing are then bent into the desired configuration for intubation. The Carden tube is slid over the protruding distal end of the sytlet to abut the plastic tubing. Care is taken so that the distal tip of the sytlet comes no closer than 2 cm from the distal tip of the Carden tube to prevent tracheal injury (fig. 1). This configuration closely resembles a standard oral endotracheal tube. Laryngoscopy is then performed, and the Carden tube is inserted into the trachea with the tube placed immediately distal to the vocal cords. The sytlet is removed while the plastic suction tubing remains in place against the Carden tube to prevent dislodgement of the Carden tube. The cuff on the Carden tube is inflated, and the plastic suction tubing is removed.

We find this an easy, safe method of Carden tube insertion, which varies little from routine endotracheal intubation.

REFERENCES

Conversion of Nasal to Oral Intubation

RAUL O. FERNANDEZ, M.D.,* MARTIN F. McCARTHY, M.B.,† MARTIN I. GOLD, M.D.‡

There are rare instances when nasal intubation must be followed by oral intubation in the same patient during maxillofacial or ear, nose, and throat surgery.¹² We describe here a technique to avoid dual intubation by using the same endotracheal tube.

A 55-year-old man with severe trismus secondary to facial trauma was scheduled for extensive elective surgery. The preoperative roentgenogram (fig. 1) demonstrates the fractured sites. Preoperative physical status was ASA 2. Atropine, 0.5 mg, and hydroxyzine, 125 mg, im, were administered for premedication. The patient was adequately sedated, 4 per cent lidocaine sprayed through both nostrils, and the nasopharynx and oropharynx similarly anesthetized; translaryngeal injection of 4 per cent lidocaine was accomplished.³ A total of 6 ml of lidocaine was utilized. Awake blind nasotracheal intubation was accomplished with a 7.5-mm (ID) red rubber tube; anesthesia was induced with methohexitol, 150 mg, iv, ventilation assisted, and anesthesia maintained with enflurane and nitrous oxide–oxygen, 50:50.

Following repair of the maxillary fractures, the intraoral part of the procedure was completed. To facilitate working on the infraorbital and nasal–ethmoidal complex area, the endotracheal tube had to be repositioned. Figure 2 demonstrates the nasotracheal site of the endotracheal tube. Trismus was no longer present, and the oropharynx was suctioned. The cuff of the nasotracheal tube was deflated, the metal

* Resident.
† Resident.
‡ Professor, Department of Anesthesiology, University of Miami, School of Medicine; Chief, Anesthesia Service, Veteran's Administration Hospital, Miami, Florida 33125.

Accepted for publication February 6, 1978.

Address reprint requests to Dr. Gold: Miami Veteran's Administration Hospital, Department of Anesthesia, 1201 N. W. 10th Street, Miami, Florida 33125.

6000-3022/78/0900/0221 $00.60 © The American Society of Anesthesiologists, Inc.
adaptor was removed, and two suction catheters were wedged tightly in the proximal end of the tube for the purpose of moving it into the oropharynx. The tube was advanced, along with the pilot tube and inflating balloon, such that the distal end of the tube was now in the right main bronchus. With direct vision into the oropharynx, the proximal end of the endotracheal tube was grasped with a large hemostat (fig. 3). The suction catheters were removed from the tube via the nostril. The endotracheal tube along with the pilot tube and inflating balloon were then withdrawn through the mouth. The curved adaptor was reinserted, and connected to the corrugated extension and Y-piece of the anesthesia circle system (fig. 4). The
The authors thank Stuart N. Kline, D.D.S., Professor of Oral and Maxillofacial Surgery, for cooperation and advice.

ADDENDUM

Two subsequent dual intubations, identical to that described above, have been performed with facility, with no sequelae.

REFERENCES