control values (table 1). It is probable that sustained contracture of extraocular muscles is responsible for this initial increase in intraocular pressure.

The subsequent full dose of SCH and endotracheal intubation did not increase intraocular pressure. There have been reports that intraocular pressure increases after endotracheal intubation.11,12 Straining and coughing during endotracheal intubation, which could contribute to the increase in intraocular pressure, were not seen.

Glaucomatous patients showed comparatively large increases in intraocular pressure in response to pretreatment doses, suggesting that this technique should not be used for such patients.

Surprisingly, the problem of post-SCH myalgia did not arise. It is difficult to say whether the protective effect against SCH-induced myalgia resulted from the pretreatment dose of diazepam or other factors. It has been reported that even 5 mg SCH may produce myalgia,13 so perhaps diazepam was responsible for its prevention.

In conclusion, pretreatment with a small subparalytic dose of SCH before administration of the full dose prevents muscle fasciculations and increases in intraocular pressure. It is concluded that this sequence of anesthesia can safely be used in intraocular or perforating ophthalmic operations.

The authors are greatly indebted to Professor Stanley V. Malvea for his kind interest and suggestions during the study. Thanks are also due to Drs. Miss Usha R. Sharma, B. L. Gupta, and A. Jayaram, and to the patients who voluntarily submitted to the study.

Anesthesiology
50:247–249, 1979

Use of a Left Atrial Pressure Monitor to Diagnose a Malfunctioning Mitral Valve Prosthesis

J. G. REVES, M.D.,* and ELIZABETH SCHONLAU, M.D.†

Intra- and postoperative monitoring of left atrial pressure (LAP) is routine for all cardiac surgical procedures at our center.1 The following case demonstrates the value of left atrial pressure monitoring to detect faulty prosthetic valve performance after mitral valve replacement.

* Associate Professor of Anesthesiology.
† Fellow in Cardiac Anesthesiology.

Received from the Department of Anesthesiology–Section of Cardiac Anesthesiology, University of Alabama Medical Center, Birmingham, Alabama 35294. Accepted for publication July 15, 1978.

Address reprint requests to Dr. Reves.

0003-3029/79/0300/0247 $00.60 © The American Society of Anesthesiologists, Inc.

CLINICAL REPORTS

REFERENCES

REPORT OF A CASE

A 61-year-old white male needed anesthesia for replacement of his mitral valve. He had had rheumatic fever at the age of 6 years, but had been asymptomatic until five months prior to admission. At that time he experienced atrial fibrillation and congestive cardiac failure that progressed despite optimal medical management with digoxin and furosemide. The patient was admitted with the diagnosis of mitral insufficiency.

The patient was anesthetized with diazepam, pancuronium, N₂O/O₂, and fentanyl. The anesthetic course prior to cardiopulmonary bypass was uneventful. Intravenous administration of nitroprusside was necessary to maintain mean left atrial pressure (LAP) at ≤20 torr. The mitral valve was replaced with a 31-mm Björk-Shiley prosthesis without difficulty during 38 minutes of ischemic cold cardioplegic arrest. Myocardial performance...
was initially satisfactory following cardiopulmonary bypass with a systolic pressure of 100 torr and LAP 15 torr. Ten minutes after termination of bypass systemic pressure decreased to 40 torr with LAP 35–50 torr (fig. 1). The surgeon was immediately informed that the mitral valve prosthesis apparently was malfunctioning. Palpation of the left atrium confirmed the diagnosis. Repeated manual manipulation was necessary to relieve the intermittent mitral valve prosthesis obstruction. During the 30-min interval prior to reestablishing cardiopulmonary bypass cardiac output gradually deteriorated, with one episode of ventricular fibrillation that necessitated electrical defibrillation.

Examination of the prosthesis during bypass failed to disclose the cause of intermittent obstruction. A 29-mm Björk-Shiley valve was placed during 36 minutes of ischemic cold cardioplegic arrest and the disc occluder oriented differentially to minimize potential contact with the thickened myocardium. Cardiopulmonary bypass was discontinued. The patients hemodynamic status remained satisfactory, with LAP 10–15 torr and systolic pressures ranging from 90 to 120 torr.

The following morning the patient was neurologically normal, cardiac index 2.2 l/min, and the trachea was extubated. The only postoperative complications were a febrile episode on the fourth postoperative day and recurrence of atrial fibrillation. He was discharged in satisfactory condition on the ninth postoperative day.

Discussion

The purpose of monitoring devices is the accumulation and presentation of important physiologic data, which, when properly interpreted, warn, advise and instruct the physician. LAP provides information regarding filling pressure, myocardial function, and valve performance of the left side of the heart. Techniques of placement during cardiac surgical procedures have been previously described.

This case illustrates the importance of continuous monitoring of left atrial pressure during mitral valve operations. The data from the LAP catheter facilitated the diagnosis of a malfunctioning mitral valve prosthesis. Hypotension following replacement of the mitral valve is not uncommon, and when associated with an elevated LAP it usually is the result of decreased cardiac output or excessive volume of infusion. However, it was apparent from both the arterial pulse contour and the left atrial tracing that this case was not a common one of hypotension resulting from pump failure, but rather, the systemic hypotension resulted from intermittent mechanical failure of the prosthetic valve mechanism. With each beat there is an increase in LAP with progressive systemic hypotension. The hemodynamic observations resulted from failure of the left atrium to empty, causing a progressive increase in left atrial volume, and therefore, pressure. The left ventricle, in turn, received little or no volume from the left atrium, and with each contraction ejected a progressively smaller stroke volume, causing hypotension. The valve occluder intermittently obstructed until it was manually opened or enough intramural pressure forced it open. Two possible alternative causes for similar hemodynamic disturbances could be arrhythmia or manipulation of the heart; both were easily ruled out in this case by the persistent normal sinus rhythm on the EKG and by observation of the surgical field.

Malfunction of the mitral valve prosthesis is a rare complication that usually necessitates immediate valve
restitution to restore adequate cardiac output. Had the
cause of the hemodynamic disturbances not
been immediately detected, it is doubtful that our pa-
tient would have survived.

The authors gratefully acknowledge the contribution of Sandi
Strong for the preparation of the illustration.

REFERENCES
by-pass for cardiac surgery, Gibbon's Surgery of the Chest.

Anesthesiology
50:249–252, 1979

Cardiac Tamponade from Central Venous Catheters
RAY J. DEFAQUE, M.D.,* AND CHRISTINA CAMPBELL, M.B., CH.B.†

At least 34 cases of cardiac tamponade resulting
from the use of central venous catheters, 78 per cent
of them fatal, have been reported since March 1968.1
We know of another 11 fatal cases that have not been
reported in the medical literature, and we suspect, as
do others,2-4 that such accidents often are not re-
ported. Below we review the 34 reported cases. In
many of them, the causes, symptoms, clinical courses,
and pathologic findings were similar; we have sum-
marized these common features. All investigators
agree that a few simple precautions can prevent perfo-
rations by catheters or greatly reduce its inci-
dence. We present their suggestions, as well as meas-
ures that they found successful in treating tamponade.
It is our impression that many of the reported deaths
could have been avoided, had the perforations and
incipient tamponades been diagnosed more promptly.

CLINICAL COURSE

Of the 34 patients whose cases were reported, 19
had brachial venous catheters, 12 had subclavian-vein
catheters, and three had external jugular-vein
catheters. Sixteen of the 19 brachial venous catheters
were long cannulas of rigid polyethylene with sharp
tips inserted through venous cutdowns. The 18 other
cannulas (three brachial and 15 jugular or sub-
clavian) were tubings made of nylon or Silastic©,
or commercial units of Teflon®, soft polyethylene,
or polyvinylchloride.

* Professor.
† Assistant Professor.
Received from the Department of Anesthesia, Indiana University
School of Medicine, 1100 West Michigan Street, Indianapolis, Indiana 46202. Accepted for publication July 15, 1978.
Address reprint requests to Dr. Defalque.

Third edition. Edited by Sabiston DC Jr, Spencer FC.
Philadelphia, W. B. Saunders, 1976, pp 846–866
2. Kirklin JW: Symposium on Monitoring (editorial). Anes-
thesiology 45:115, 1976
3. Forsberg SA: Relations between pressure in pulmonary artery,
left atrium, and left ventricle, with special reference to
events at end diastole. Br Heart J 33:494–499, 1971
direct and indirect measurements of left atrial filling
5. Lappas DG, Powell WM Jr, Doggett WM: Cardiac dysfunction
in perioperative period: Pathophysiology, diagnosis and