The Esophageal Stethoscope and Operations on the Neck

To the Editor:—In a recent article, Schwartz and Downes reported inadvertent esophageal laceration where the esophageal stethoscope was misidentified as either endotracheal tube or ventricular–jugular shunt.¹ McLaughlin, in a Letter to the Editor, concluded that this complication was related to the skill of the surgeon.² We recently had an experience similar to that of Drs. Schwartz and Downes. The patient was a newborn with a cystic hygroma necessitating emergency tracheostomy whose esophagus was incised when the esophageal stethoscope was misidentified as the endotracheal tube. This case re-emphasizes the importance of the admonition by Drs. Schwartz and Downes to communicate with the surgeon about what catheters might be palpable when neck dissection is performed in a child.

Charles J. Côté, M.D.
Staff Anesthesiologist
Naval Regional Medical Center
Department of the Navy
Portsmouth, Virginia 23708

REFERENCES
(Accepted for publication August 24, 1978.)

Routine Gastric Aspiration

To the Editor:—Since the advent of disposable, plastic, gastric sump tubes, oro gastric aspiration of stomach contents is a readily accomplished maneuver. For several years, I have made frequent, almost routine use of this maneuver in patients undergoing general endotracheal anesthesia, except where it hinders the surgeon. In 500 to 600 such cases per year, I have had only one complication. In one patient, undefined bleeding from the distal esophagus or stomach occurred during a minor urologic procedure. The bleeding stopped spontaneously and there were no sequelae. During these several years, I have taken some amusement in showing the surgeons a suction bottle with various amounts of clear through various hues of green and brown acidic fluid while repeating the dictum I heard years back from my learned professors: “There ain’t no such thing as an empty stomach!”

I have measured by suction bottle estimate the gastric contents aspirated from my last 90 patients undergoing general endotracheal anesthesia. These were mostly adult inpatients from a 225-bed suburban community hospital undergoing elective operations, with a few emergencies and outpatients. No obstetric or cardiovascular patient was included. From 58 patients I recovered 30 to 750 ml of gastric contents by aspiration and gravity drainage in the period immediately after induction. Of the remainder, five patients had no recoverable gastric contents and 27, as much as 25 ml of gastric contents. One patient, from whom I could recover no fluid, was obese. The 750-ml volume was aspirated from the stomach of a thin, nervous woman who, three days after a hysterectomy, underwent a cystoscopy and pyelography late in the day.

My conclusion is that my professors were right. We cannot predict the exceptional patient with an empty stomach. Most patients have some aspiratable gastric fluid. A cuffed endotracheal tube will protect them while it is in. Routine drainage of gastric contents may provide additional safety and lessen the discomfort of emesis in the early postoperative period.

John E. Hohmann, M.D.
Chairman
Department of Anesthesiology
Mt. Carmel East Hospital
Columbus, Ohio 43213
(Accepted for publication August 24, 1978.)

Homogeneous Gas Mixtures in the Bain Circuit

To the Editor:—Rayburn and Graves¹ state that if the minute ventilation is three times the fresh gas inflow into the Bain circuit, expired gases and fresh gas inflow will mix homogeneously. In a laboratory study of the Bain circuit (a coaxial version of the Mapleson D systems),² we recorded the oscillations of the indi-
cator needle of the capnograph caused by variations in carbon dioxide concentration during inspiration and expiration. Gas specimens were obtained both at the patient end of the system and at the junction of the ventilator hose with the circuit. Mean concentrations of carbon dioxide were measured by manually diverting an entire tidal volume into a 1-l bag. With a respiratory minute volume of 7,500 ml/min, a fresh gas inflow of 2,500 ml/min, and a simulated metabolic production of carbon dioxide of 100 ml/min, we found that: 1) inspired gases had an F\textsubscript{I}CO\textsubscript{2} of 3.2 per cent, oscillating between 3 and 5 per cent; 2) expired gases had an F\textsubscript{E}CO\textsubscript{2} of 4.5 per cent, oscillating between 3.5 and 5 per cent; 3) gases at the junction of the ventilator with the circuit had a mean CO\textsubscript{2} concentration of 4.5 per cent, oscillating between 4.2 and 4.8 per cent. It appears, therefore, that assumptions of Rayburn and Graves are not borne out by experimental data, since homogeneous mixtures do not cause oscillations.

The authors claim that a change in fresh-gas inflow brings about an instantaneous variation in arterial carbon dioxide tension, which is immediately reflected by a change in the carbon dioxide content of the circuit measured 180 cm away from the patient end. We fail to understand how this can happen so suddenly and feel that this change is probably caused by the dilution of the carbon dioxide in the circuit by the additional fresh gas volume.

We do not doubt that normocarbia can be obtained with the Bain circuit. This is not due to the creation of a homogeneous mixture but to the functional characteristics of Mapleson D systems, which deliver fresh gases ahead of expired gases, and with large tidal volumes. The use of very low fresh-gas inflow with this type of system can lead to unpredictable inhaled gas compositions.\(^3\) The excessive minute volumes used by Rayburn and Graves may have a potentially adverse effect on the patient's cardiac output, especially in the presence of halothane. In our experience, an almost homogeneous mixture is found only in the ventilator and at the machine end of the circuit, and not along the entire length of the circuit, as stated by the authors.

Finally, in their analysis of expired carbon dioxide concentration, they used a Goddard capnograph, but they fail to mention whether they zeroed their instrument with the nitrous oxide in oxygen mixture they used on their patients, and whether they applied a correction for the molecular broadening effect of nitrous oxide.\(^4\) Failure to apply these corrections will introduce a sizeable error in the data obtained.

S. Ramanathan, M.D.
U. Gupta, M.D.
J. Chalon, M.D.
Department of Anesthesiology
New York University Medical Center
560 First Avenue
New York, New York 10016

REFERENCES

(Accepted for publication August 24, 1978)