CORRESPONDENCE

Mylanta II or Maalox, the latter two are more desirable. Mylanta is our choice because of the tendency of Maalox to be more objectionable to patients. Finally, greater efforts toward patient education concerning the need for antacids should improve patient acceptance.

David M. Dewan, M.D.
Assistant Professor of Anesthesia

Herbert M. Floyd, M.D.
Assistant Professor of Anesthesia

William T. Grant, M.D.
Fellow in Obstetric Anesthesia

Francis M. James, III, M.D.
Professor of Anesthesia

A. Scott Wheeler, M.D.
Assistant Professor of Anesthesia

Robert T. Westmoreland, M.D.
Assistant Professor of Anesthesia

Leonard Rhyne, Ph.D.
Associate Professor of Family Practice and Community Medicine

Department of Anesthesia
Bowman Gray School of Medicine
300 S. Hawthorne Road
Winston-Salem, North Carolina 27103

REFERENCES


(Accepted for publication January 14, 1980.)

Ketamine and Paralysis Agitans

To the Editor: —It has been suggested that ketamine be avoided in patients being treated with L-dihydroxyphenylalanine (L-dopa) because of an exaggerated sympathetic response.1 We administered ketamine anesthesia to a 75-year-old man who had severe paralysis agitans (Parkinson's disease) and was receiving L-dopa, and found no hypertension but, instead, a salutary alleviation of his disease. The patient had a ten-year history of paralysis agitans and was totally incapacitated by the disease: he had extreme akinesia, rhythmic tremor, and general enfeeblement. He used eye signals to communicate, and could withdraw in response to painful stimuli. Surgical closure of a large trochanteric decubitus ulcer was planned. We chose ketamine anesthesia to avoid a difficult intubation. Ketamine, 200 mg, iv, was given over three hours, supplemented with nitrous oxide. The tremor ceased and the muscle rigidity decreased. This effect persisted for several hours postoperatively.

The postulated biomolecular defect in paralysis agitans is a decrease in dopaminergic neurons in the nigrostriatal pathways.2 Treatment consists of increasing dopaminergic activity. Experimentally, ketamine has been shown to alter dopamine levels in rat brain.3 Whether it does so in man is unknown; our clinical observation suggests it may.

Paralysis agitans is a common disabling disease (1.57 cases per 1,000 population) presenting multiple problems for the anesthesiologist.4,5 Musculoskeletal deformities can make intubation traumatic, pharyngeal dysfunction increases the potential for aspiration, and impaired baroreceptor reflexes can produce unpredictable blood pressure responses. Although ketamine may be theoretically contraindicated in patients receiving L-dopa therapy, we found its use in this particular case to be advantageous.

Anne Hetherington, M.D.
Richard M. Rosenblatt, M.D.
Department of Anesthesiology
University of California, Davis
Sacramento, California 95817

REFERENCES


(Accepted for publication January 14, 1980.)