fitting, was elevated to reduce kinking in the connector hose. At this time, breath sounds were noted to be markedly diminished and an audible leak noted as the ventilator bellows descended. With return of the reservoir bag to the anesthesia circuit, no significant leaks were detected and effective ventilation was easily reestablished. Thorough examination of the ventilator fittings revealed several fine, longitudinal cracks in the machine connector pipe (fig. 1). Raising the ventilator and applying the screw clamp caused displacement of the fatigued metal pipe. This appeared as a variable leak in the ventilator system, depending upon the pressure and location of clamp application.

In retrospect, we speculate that this problem may have been present in previous cases but with no obvious cause or a variable leak of any great magnitude. The ventilator had been in active use and had passed all routine equipment checks. In fact, the area of metal fatigue was not obvious unless the connector pipe was deformed by a clamp or other pressure over the precise area of vulnerability; but there were several such areas along the length of the pipe. We hope that this report will serve to reemphasize the need to carefully examine all metal fittings which are prone to fatigue. Furthermore, it represents a major design flaw when a part of the ventilator circuit is also used as a structural mount and thereby subjected to the recurrent stress of daily operating room usage.

Steven Wolf, M.D.
Assistant Professor of Anesthesiology
Charles B. Watson, M.D.
Assistant Professor of Anesthesiology
Phyllis Clark, DDS,
Resident, Oral Surgery
Department of Anesthesiology
School of Medicine
Department of Anesthesiology
The University of North Carolina
at Chapel Hill
Burnett-Womack Building
Chapel Hill, North Carolina 27514

Reference

(Accepted for publication December 30, 1980.)

Factors Affecting Rebreathing in T-piece Circuits

To the Editor: —The article by Byrick and Janssen on the effect of respiratory waveforms on rebreathing in T-piece circuits provides useful and provocative information. But like many papers on the subject, the authors' interpretation of their own results is flawed.

If a patient's respiratory waveform does affect rebreathing in a T-piece system—and it probably does—a paper fails to prove it. Unfortunately, the authors did not take into account a variable known to affect the amount of rebreathing in a Mapleson-D system: the ratio of fresh gas flow rate (V_F) to minute volume ventilation (V_E). For instance, in their Table 1, they report (in the upper left hand cell) that when V_F was 100 ml·kg⁻¹·min⁻¹, mean V_E was 4.34 l/min in their enflurane group, and 8.89 l/min in their halothane group. Assuming that the patients' body weights were comparable between the two groups and averaged 70 kg (and therefore V_F averaged 100 ml·kg⁻¹·min⁻¹ × 70 kg = 7.0 l/min) then the ratio V_F/V_E was 1.6 in the enflurane group, but only 0.8 in the halothane group, a twofold difference. On this basis alone one would expect to see little rebreathing in the enflurane group, but quite a lot in the halothane group. This is just what was found.

One could argue, in support of the authors' hypo-

![Graph](image)

Fig. 1. Calculated V_F/V_E ratios for both anesthetic groups at each fresh gas flow rate plotted against the inspired CO₂ volume per minute.
Anesthesiology
V 55, No 1, Jul 1981

CORRESPONDENCE

85

pothesis, that the larger values of V_E consistently seen with halothane was the effect, rather than the cause, of greater rebreathing in that group. But this is unlikely. Even when rebreathing was minimal or absent ($V_F = 200 \text{ ml} \cdot \text{kg}^{-1} \cdot \text{min}^{-1}$) V_E was larger in the halothane group. Moreover, end-tidal CO$_2$ concentrations were consistently lower in the halothane group despite the presence of a greater degree of rebreathing. This suggests that less respiratory depression was present with halothane than with enflurane, and that the V_E was always larger in the halothane group on that basis. Obviously a larger V_E at a given V_F will result in a smaller ratio of V_F to V_E, and therefore more rebreathing will be seen.

It should be noted in fairness to the authors that controlling for differences in V_E during spontaneous ventilation, especially with different anesthetics, is extremely difficult. Nevertheless, the differences in V_E between patients breathing enflurane and those breathing halothane seen in this study can explain the observed differences in rebreathing. One could argue that the respiratory waveforms played no role at all.

It may be possible to get at the precise role of the respiratory waveform from the data presented by Byrick and Janssen, if a way could be found to adjust the data for differences in the V_F/V_E ratios between the two groups. To this end, I calculated V_F/V_E ratios for both anesthetic groups at each fresh gas flowrate, using the mean values of minute volume from their table 1 and assuming a body weight of 70 kg. I then plotted these against the inspired CO$_2$ volume per minute (their measure of rebreathing) and found that the results from both groups fell almost exactly along the same curve (see fig. 1). Perhaps with the original data, the authors might be able to see differences, presumably due to variation in respiratory waveform. My own guess is that if there is a difference due to waveform, it is small.

This paper implies that the Bain circuit is unpredictable in its performance because of the wide and uncontrollable variability of respiratory waveforms seen during spontaneous ventilation. The data presented by Byrick and Janssen—useful as they are—do not support this implication.

RICHARD L. KEENAN, M.D.
Department of Anesthesiology
Medical College of Virginia
Richmond, Virginia 23298

REFERENCES

(Accepted for publication January 13, 1981.)

In reply: —The aim of our study, as the title suggested, was to analyze and compare the respiratory waveform of anesthetized patients during halothane and enflurane anesthesia, and to relate these waveform differences to rebreathing in T-piece circuits. The key role of minute volume (V_E) and the V_F/V_E ratio has been experimentally verified as Dr. Keenan suggests. Indeed, our hypothesis assumed that this relationship would exist, although presenting data in this manner would seem to verify our technique of measuring the inspired CO$_2$ load. The impact of respiratory waveform on rebreathing can only be analyzed when one considers the basic components of V_E which characterize a waveform, that is the inspiratory flow rate and the timing of each phase.

Milic-Emili et al. introduced the concept of analyzing a given minute volume (V_E) in terms of inspiratory drive (V_F/T_I) and the effective timing ratio. This relationship,

$$V_E = \frac{V_F}{T_I} \times T_I \times \frac{T_{tot}}{60}$$

characterizes the interdependence of V_E and the components of the respiratory waveform. By plotting the ratio V_F/V_E, Dr. Keenan is including the waveform characteristics on the x-axis which he wishes to isolate for examination. There are many variables (including dead-space, end-tidal CO$_2$ levels, and waveform) which will influence the relationship between inspired CO$_2$ volume and the V_F/V_E ratio. The key finding of our study was that when halothane-anesthetized patients increased V_F/T_I, the fraction of CO$_2$ inspired increased. When enflurane was used, the exact opposite