well and, on the average, were able to be weaned from mechanical ventilation and extubated on the third postoperative day. A significant improvement in $P_{aO_{2}}$, $P_{aCO_{2}}$, and FVC was seen in each of these patients (table 1). An increased functional residual capacity (FRC) was noted in each of the three patients in whom it was measured before and after weight loss. The MVV rose in three of the five patients.

In those patients who have significantly impaired ventilatory function associated with obesity, a marked improvement in forced vital capacity, functional residual capacity, and arterial blood gases can be expected following massive weight loss after gastroplasty. Furthermore, resolution of obstructive sleep apneas following weight loss will permit closure of a tracheostomy initially required to relieve obesity-induced upper airway obstruction.

Table 1. Effects of Gastroplasty-induced Weight Loss on Arterial Oxygenation in Selected Patients

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age</th>
<th>(Ideal) Weight (kg)</th>
<th>Weight (kg)</th>
<th>$P_{aO_{2}}$ (torr)</th>
<th>$P_{aCO_{2}}$ (torr)</th>
<th>FVC</th>
<th>FRC</th>
<th>MVV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Before</td>
<td>After</td>
<td>Before</td>
<td>After</td>
<td>Before</td>
<td>After</td>
<td>Before</td>
</tr>
<tr>
<td>1</td>
<td>30</td>
<td>61</td>
<td>127</td>
<td>110</td>
<td>43</td>
<td>72</td>
<td>68</td>
<td>49</td>
</tr>
<tr>
<td>2</td>
<td>56</td>
<td>69</td>
<td>140</td>
<td>85</td>
<td>59</td>
<td>70</td>
<td>47</td>
<td>38</td>
</tr>
<tr>
<td>3</td>
<td>44</td>
<td>60</td>
<td>140</td>
<td>85</td>
<td>44</td>
<td>79</td>
<td>46</td>
<td>42</td>
</tr>
<tr>
<td>4*</td>
<td>30</td>
<td>90</td>
<td>264</td>
<td>200</td>
<td>38</td>
<td>65</td>
<td>57</td>
<td>35</td>
</tr>
<tr>
<td>5†</td>
<td>30</td>
<td>85</td>
<td>172</td>
<td>104</td>
<td>58</td>
<td>65</td>
<td>42</td>
<td>35</td>
</tr>
<tr>
<td>MEAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>±48</td>
<td>±56</td>
</tr>
</tbody>
</table>

— Combined obesity hypoventilation syndrome and sleep apnea syndrome.
† Sleep apnea syndrome.
‡ $P < 0.05$.

REFERENCES

Accepted for publication May 15, 1981.

Use of a Flexible, Radiopaque Directable Catheter for Difficult Tracheal Intubations

To the Editor—A variety of methods for managing the technically difficult endotracheal intubation have been described.1,2,3 We wish to report another method of facilitating endotracheal intubation, which has proven to be successful when other maneuvers have failed. The technique makes use of a flexible, radiopaque, directable catheter inserted into the trachea under fluoroscopic control, in the spontaneously breathing patient.

In the radiology suite, a lubricated endotracheal tube of proper size is inserted through the nose and advanced into the posterior oropharynx in the usual manner. A flexible 65-cm steerable catheter with attached Medi-tech SH-4 control handle (7 French)† is then passed through the endotracheal tube. Under fluoroscopic visualization of the airway in the lateral projection, the catheter is advanced past the epiglottis and into the larynx with steering of the catheter as necessary (fig. 1). An anterior-posterior fluoroscopic projection is occasionally necessary if difficulty is encountered while advancing the catheter, due to lateral deviation of the tip into the pyriform recess. Upon directing the patient to suppress

† Medi-tech, Incorporated, Watertown, Massachusetts.
his cough and breathe slowly and deeply, the catheter is advanced into the fluoroscopically visible trachea. The endotracheal tube is gently advanced over the catheter, which is then removed. The patient is then immediately transported to the operating room and anesthesia induced in the usual manner.

This technique has proven successful in all cases wherein it has been employed, despite the presence of significant oropharyngeal hemorrhage, cervical spine immobility or airway edema. The procedure has been found to be simple, quick, and well-tolerated in mildly sedated patients, even those in whom endotracheal intubation using a variety of other maneuvers proved impossible. There has been no associated morbidity.

We now electively use this method when preoperative examination reveals technically difficult intubation to be likely, as in cases of upper airway mass, cervical spine, or mandibular immobility. The small size of the catheter enables its application with larger pediatric as well as double lumen endotracheal tubes. The generally widespread availability of this catheter, and its skilled use by radiologists in a variety of fluoroscopic procedures, make this technique worthy of consideration to facilitate otherwise difficult endotracheal intubation.

A. J. Davidson, M.D.
Resident in Training (Anesthesiology)

A. C. Reynolds, M.D.
Assistant Professor (Anesthesiology)

E. T. Stewart, M.D.
Professor (Radiology)

Department of Anesthesiology and Radiology
Medical College of Wisconsin
Milwaukee, Wisconsin 53226

REFERENCES

(Accepted for publication May 20, 1981)