Pulmonary Oxygen Exchange during Endobronchial Anesthesia: Effect of Tidal Volume and PEEP

To determine the effects of tidal volume (VT) and positive end-expiratory pressure (PEEP) on pulmonary oxygen exchange during endobronchial (one-lung) anesthesia, the authors studied the effects of VT at 8 and 16 per cent total lung capacity (TLC), at zero end-expiratory pressure (ZEEP), and at 10 cm H2O PEEP in 16 patients in the lateral position. Anesthesia was maintained with halothane and oxygen. During two-lung ventilation (Pao2 0.99), mean Pao2 and physiologic shunt (Qs/Qt) were 421 ± 12 mmHg and 0.22 ± 0.02, respectively. During one-lung ventilation, Pao2 decreased and venous admixture (or Qs/Qt) increased in every patient. The magnitude of this decrease correlated directly with the preoperative forced expiratory volume in one second (FEV1) (r = 0.66, P < 0.005). A VT of 16 per cent of TLC at ZEEP resulted in the highest mean Pao2 (210 ± 30 mmHg) and lowest Qs/Qt (0.55 ± 0.02), probably as a result of end-inspiratory alveolar recruitment with the least pulmonary blood flow redistribution. When 10 cm H2O PEEP was applied during 16 per cent TLC ventilation, mean Pao2 decreased from 210 ± 55 to 162 ± 25 mmHg (P < 0.05). PEEP did not significantly affect Pao2 during 8 per cent TLC ventilation. At both levels of VT, PEEP reduced mean Qs by approximately 10 per cent (P < 0.01) and increased compliance (P < 0.01). However, PEEP did not significantly affect mean Qs/Qt or mean arterial or pulmonary arterial pressures at either level of VT. There was considerable variation in Pao2 and Qs/Qt among patients. (Key words: Anesthesia, thoracic. Anesthetic techniques: endobronchial. Lung: compliance; function; shunting. Ventilation: mechanical; oxygen tension [gradients]; positive end-expiratory pressure; tidal volume; zero end-expiratory pressure.)

ONE-LUNG (ENDOBRONCHIAL) ANESTHESIA offers special advantages during certain types of thoracic surgery,1,2 but has the disadvantage of causing defective pulmonary oxygen exchange and an increase in the alveolar-to-arterial oxygen pressure difference P(A-a)O2.3-5 This increase in P(A-a)O2 is probably due to perfusion of collapsed nondependent and, possibly, dependent lung.6,7 The pulmonary blood flow to the nondependent lung may be less when that lung is diseased diffusely.7 During lateral thoracotomy, dependent lung atelectasis may be caused by the gravitational effects of the mediastinum and the abdominal contents,8 as well as by denitrogenation by more soluble gases.9 In addition, P(A-a)O2 may be increased further by anesthetic agents that reverse hypoxic pulmonary vasoconstriction.10

Techniques designed to minimize P(A-a)O2 during endobronchial anesthesia have included varying tidal volume (VT),11,12 and positive end-expiratory pressure (PEEP)13-15 in the dependent lung. Insufflating oxygen into the nondependent, nonventilated lung has been suggested also.16 Data from prior studies on varying VT have been inconsistent.11,12 Also, although the use of PEEP generally has been shown to increase P(A-a)O2,13-15 the interaction of VT and PEEP has not been examined. The effects of large VT and PEEP on atelectasis are directionally equivalent in that both may recruit atelectatic lung. PEEP may be more effective than a transient (intermittent) end-inspiratory pressure peak in recruiting atelectatic lung because of the longer time course required for recruitment.17 However, PEEP may also de-

ABBREVIATIONS

BP = mean systemic blood pressure
Cao2 = arterial oxygen content
Ccap = end-pulmonary capillary oxygen content
Clt = lung-thorax compliance
Cop = oxygen content
Cvo2 = mixed venous oxygen content
FEV1 = forced expiratory volume in one second
Fio2 = fractional concentration of inspired oxygen
FVC = forced vital capacity
PA = mean pulmonary artery pressure
P(A-a)O2 = alveolar-to-arterial oxygen pressure difference
Paco2 = arterial carbon dioxide partial pressure
Pao2 = arterial oxygen partial pressure
PAcO2 = alveolar oxygen partial pressure
Paw = airway plateau pressure
PEEP = positive end-expiratory pressure
Pao2 = partial pressure of inspired oxygen
Pao2 = partial pressure of oxygen
Qa = blood flow through non-shunted pulmonary capillaries
Qs/Qt = venous admixture or physiologic shunt
Qc = cardiac output
SaO2 = arterial oxygen saturation
SpO2 = oxygen saturation
Svo2 = mixed venous oxygen saturation
TLC = total lung capacity
VT = tidal volume
ZEEP = zero end-expiratory pressure

* Assistant Professor of Anesthesia.
† Resident in Anesthesia.
‡ Professor of Anesthesia.
§ Associate Professor of Surgery.
Received from the Departments of Anesthesia and Surgery, University of California, San Francisco, California 94143, and San Francisco General Hospital, San Francisco, California 94110. Accepted for publication August 25, 1981. Presented in part at the annual meeting of the American Society of Anesthesiologists, St. Louis, Missouri, October 16, 1980.
Address reprint requests to Dr. Katz: Department of Anesthesia, San Francisco General Hospital, Room 3350, 1001 Potrero Avenue, San Francisco, California 94110.
crease cardiac output (\(Q_c\)) and mixed venous oxygen content (\(C_{\text{O}_2}\)), as well as cause a sustained redistribution of pulmonary blood flow from ventilated to atelectatic regions.\(^{18}\)

This study evaluates the interaction between \(V_T\) and PEEP as well as the importance of prior lung disease.

Methods

The study was approved by the Committee on Human Research, and informed consent was obtained from each patient. We studied 17 adult patients (13 men and 4 women) undergoing elective thoracotomy. Their average age (±SE) was 56 ± 2.4 years; mean height, 171 ± 1.9 cm; and mean weight, 63 ± 2.8 kg. Pulmonary function testing was performed preoperatively in the sitting position and included forced expiratory volume in one second (FEV\(_1\)), forced vital capacity (FVC), residual volume (RV), total lung capacity (TLC), and functional residual capacity (FRC; as determined by plethysmography) (table 1). No patient had cardiac disease. Premedication consisted of morphine sulfate, 0.1 mg/kg, im. An intravenous line was established and the radial artery cannulated preoperatively. Anesthesia was induced with thiopental and pancuronium and maintained with halothane and oxygen, delivered through a (left-sided) Robertshaw double-lumen tube. Tube position was confirmed by auscultation and visually at thoracotomy. In 13 patients it was possible, after induction of anesthesia, to insert a no. 7 triple-lumen pulmonary arterial catheter percutaneously via the right internal jugular vein. The catheter was floated into the wedge position, then withdrawn a few centimeters to make inadvertent measurement of pulmonary capillary wedge pressure impossible, and to ensure that sampled pulmonary artery blood was not arterialized. The location of the tip of the catheter (the main pulmonary artery) was documented from the chest radiograph taken in the early postoperative period.

Measurements

All patients were ventilated with an Ohio Medical Products anesthesia ventilator. Tidal volume (\(V_T\)) was adjusted to either 16 per cent (large \(V_T\)) or 8 per cent (small \(V_T\)) of total lung capacity (TLC) as predicted from height and age. (In our patients, large \(V_T\) was 14 ± 0.4 ml/kg; and small \(V_T\), 7 ± 0.2 ml/kg). Expired \(V_T\) was measured by integration of flow through a heated Fleisch\(^{\circledR}\) pneumotachygraph precalibrated with oxygen. When adjustments of \(V_T\) were made, respiratory frequency was changed to maintain minute ventilation at a constant level (±5 per cent). Airway pressure (\(P_{aw}\)) was measured using a Statham\(^{\circledR}\) P23DP pressure transducer. \(P_{aw}\) and \(V_T\) were recorded simultaneously on a Gould\(^{\circledR}\) recorder. Radial and pulmonary arterial pressures were measured using a Hewlett-Packard\(^{\circledR}\) 1280c pressure transducer. Cardiac output, which was determined using a thermodilution technique (Edwards Laboratory, model 9520A), was expressed as the mean of two consecutive measurements that differed by less than 10 per cent. Blood gas tensions (\(P_{O_2}\) and \(P_{CO_2}\)) and pH of arterial and mixed venous blood were measured using a Corning\(^{\circledR}\) 175 blood-gas analyzer and were corrected to the patient’s temperature. Hemoglobin (arterial and mixed venous) concentration, oxygen (arterial and mixed venous) saturation, and carboxyhemoglobin saturation were measured using an Instrumentation Laboratory CO-Oximeter\(^{\circledR}\) 282. These measurements were taken at six points (table 2).

Stage 1 began after induction of anesthesia prior to skin incision. The patient was in the lateral position receiving two-lung ventilation (\(V_T\) was 16 per cent of TLC. After one-lung ventilation (pleural cavity open) was begun but prior to Stages 2–5, \(P_{aO_2}\) was measured every 5 min for 20 min (fig. 1). Stability of oxygen exchange during one-lung ventilation was demonstrated, as there was no statistical difference in \(P_{aO_2}\) measured at 10, 15, or 20 min (fig. 1). Stages 2 and 3 were assigned in random sequence, and then Stages 4 and 5 always followed in the same \(V_T\) sequence. During Stage 6, the thorax was closed, and the patient was in the lateral position receiving two-lung ventilation (\(V_T\) was 16 per cent of TLC at ZEEP). In two patients, measurements at Stages 4 and 5 could not be obtained. Measurements were made 8 min after each adjustment of the mechanical ventilator.

Surgical manipulation and compression of the non-dependent lung were halted during the various cardiopulmonary measurements (Stages 2–5). All measurements (Stages 2–5) were concluded prior to any occlusion and division of the pulmonary artery.

Pulmonary variables were calculated as follows. Lung-thorax compliance (\(C_{LT}\)), \(V_T/P_{aw}\), was derived from the difference between \(P_{aw}\) and \(V_T\) from the end of a period of zero end-inspiratory flow of 1.0 s to end-expiration. Data from five breaths were averaged to derive each value.

Arterial \((C_{\text{aO}_2})\), mixed venous \((C_{\text{vO}_2})\), end-pulmonary
Table 2. Cardiopulmonary Data before, during, and after Thoracotomy

<table>
<thead>
<tr>
<th>Stage</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>P < 0.05*</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEEP (cmH₂O)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>a, d, e</td>
</tr>
<tr>
<td>Vₜ (per cent pred. TLC)</td>
<td>16</td>
<td>8</td>
<td>16</td>
<td>8</td>
<td>16</td>
<td>16</td>
<td>a, e</td>
</tr>
<tr>
<td>Lungs ventilated (n)</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2†</td>
<td>a, b, c, e</td>
</tr>
<tr>
<td>Chest open</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>a, d, e</td>
</tr>
<tr>
<td>PaO₂ (mmHg)</td>
<td>421 ± 12</td>
<td>184 ± 28</td>
<td>210 ± 30</td>
<td>157 ± 27</td>
<td>162 ± 25</td>
<td>412 ± 25</td>
<td>a, d, e</td>
</tr>
<tr>
<td>PaCO₂ (mmHg)</td>
<td>33.6 ± 1</td>
<td>35.6 ± 1</td>
<td>35.4 ± 1</td>
<td>38.2 ± 1</td>
<td>35.1 ± 2</td>
<td>33.9 ± 2</td>
<td>a, d, e</td>
</tr>
<tr>
<td>Q₂/Q₁ × 100</td>
<td>21.9 ± 1.5</td>
<td>39.3 ± 2.2</td>
<td>34.5 ± 2.0</td>
<td>36.9 ± 2.1</td>
<td>34.0 ± 1.9</td>
<td>21.8 ± 0.8</td>
<td>a, c</td>
</tr>
<tr>
<td>SWO₂ (per cent)</td>
<td>84 ± 1</td>
<td>80 ± 2</td>
<td>79 ± 2</td>
<td>78 ± 2</td>
<td>76 ± 1</td>
<td>84 ± 1</td>
<td>a, e</td>
</tr>
<tr>
<td>Q₁ (l/min)</td>
<td>5.3 ± 0.4</td>
<td>6.5 ± 0.5</td>
<td>6.3 ± 0.5</td>
<td>5.8 ± 0.5</td>
<td>5.6 ± 0.6</td>
<td>5.9 ± 0.5</td>
<td>b-e</td>
</tr>
<tr>
<td>Q₂ (l/min)</td>
<td>4.1 ± 0.3</td>
<td>3.9 ± 0.3</td>
<td>4.1 ± 0.4</td>
<td>3.6 ± 0.3</td>
<td>3.7 ± 0.4</td>
<td>4.6 ± 0.4</td>
<td>d, e</td>
</tr>
<tr>
<td>BP (mmHg)</td>
<td>81 ± 4</td>
<td>85 ± 4</td>
<td>82 ± 3</td>
<td>86 ± 5</td>
<td>79 ± 4</td>
<td>78 ± 4</td>
<td>NS</td>
</tr>
<tr>
<td>PA (mmHg)</td>
<td>17 ± 1</td>
<td>21 ± 2</td>
<td>21 ± 2</td>
<td>22 ± 2</td>
<td>21 ± 1</td>
<td>19 ± 2</td>
<td>NS</td>
</tr>
<tr>
<td>P P (cmH₂O)</td>
<td>20 ± 1</td>
<td>17 ± 1</td>
<td>26 ± 1</td>
<td>23 ± 1</td>
<td>32 ± 1</td>
<td>20 ± 1</td>
<td>a-f</td>
</tr>
<tr>
<td>CₐO₂ (ml/cmH₂O)</td>
<td>52 ± 3</td>
<td>31 ± 2</td>
<td>37 ± 2</td>
<td>39 ± 2</td>
<td>41 ± 2</td>
<td>52 ± 3</td>
<td>a, b, c, e</td>
</tr>
</tbody>
</table>

Values are means ± SE. * a = Stage 2 vs. 3; b = Stage 2 vs. 4; c = Stage 2 vs. 5; d = Stage 3 vs. 4; e = Stage 3 vs. 5; and f = Stage 4 vs. 5. Data were analyzed using two-way analysis of variance; differences were determined using the Newman-Keuls test. Stages 1 and 6 were not significantly different from any variable.

† Except for three patients after pneumonectomy.

Results

Cardiopulmonary data for individual patients are available in archives. Mean data for preoperative pulmonary function are listed in table 1. Mean (±SE) preoperative PaO₂ (supine) was 78 ± 2 mmHg [fractional concentration of inspired oxygen (FIO₂) was 0.21]

During two-lung ventilation, mean (±SE) values were as follows (table 2). During Stage 1, PaO₂ was 421 ± 12 mmHg (FIO₂ 0.99), with a corresponding Q₂/Q₁ of 0.22 ± 0.02 (range was 0.15–0.33). During Stage 6, PaO₂ was 412 ± 15 mmHg, with a corresponding Q₂/Q₁ of 0.22 ± 0.01. These values were not significantly different from values for Stage 1.

During one-lung ventilation, PaO₂ was always lower than during two-lung ventilation (table 2). Mean Q₂/Q₁ increased from 0.22 ± 0.02 (Stage 1) to 0.39 ± 0.02 (Stage 2) and to 0.35 ± 0.02 (Stage 3). The lowest PaO₂ was 45 mmHg, which occurred in a patient undergoing an esophagogastrectomy. This value was obtained 15 and 20 min after one-lung ventilation was begun (Vₜ 16 per cent of TLC). Since this level represented significant arterial desaturation, study of this patient was discontinued and two-lung ventilation resumed, which increased PaO₂ to 211 mmHg. This patient did not have significant preoperative lung disease (FEV₁ was 2.8 l, 87 per cent of the predicted value).

PaO₂ during one-lung ventilation (Stage 3) correlated inversely with the percentage of predicted FEV₁ (r = −0.66, P < 0.005) (fig. 2) and the percentage of predicted FVC (r = −0.51, P < 0.05), but did not correlate significantly with FEV₁/FVC, preoperative PaO₂, or PaO₂ during two-lung ventilation (Stage 1).

Effect of Tidal Volume on Cardiopulmonary Variables during One-Lung Ventilation

Although large Vₜ ventilation (Stage 3) was associated with a larger PaO₂ and with a smaller Q₂/Q₁ than was observed with small Vₜ ventilation (Stage 2) (fig. 3), it did not change Q₁. The mean difference in PaO₂ between levels of Vₜ was small (26 mmHg). However, the individual patient data showed wide variation. Five patients increased PaO₂ by more than 40 mmHg with large, as compared with small, Vₜ ventilation. Only one patient had a significant decrease in PaO₂ with large Vₜ. PaCO₂ was greater during small Vₜ than during large
OXYGENATION DURING ONE-LUNG ANESTHESIA

Effect of PEEP (10 cmH2O) on Cardiopulmonary Variables during One-Lung Ventilation

Mean PaO2 decreased during large VT ventilation with 10 cmH2O PEEP (P < 0.05) (fig. 4). There was no significant effect on Qs/Qt (fig. 4). Although mean PaO2 fell with PEEP, this was not uniform; two patients had important improvements in oxygen exchange with PEEP, and other patients had little or no change.

PEEP reduced mean Qs by an amount that was independent of the level of VT (fig. 4), and mean SvO2 decreased during large VT ventilation with application of 10 cmH2O PEEP (table 2). Ventilation with PEEP increased ClT at each level of VT, but there was no significant effect on mean arterial or pulmonary arterial pressures (table 2).

The change in Qs/Qt with the application of 10 cmH2O PEEP during one-lung ventilation at both small and large VT ventilation correlated inversely with the initial Qs/Qt during two-lung ventilation (Stage 1) (r = -0.72, P < 0.02; and r = -0.68, P < 0.05, respectively).

Multiple linear-regression analysis of variables that might have changed CaO2 (ΔCaO2) (with the application of PEEP) was performed. These variables included Qs/Qt, Qt, and SvO2. The multiple correlation between (change in) Qs/Qt, Qt, CVO2, and ΔCaO2 was 0.95 (P < 0.001); and a significant partial correlation occurred with Qs/Qt (r = -0.73, P < 0.001).

Discussion

It is widely accepted that pulmonary oxygen exchange is impaired during endobronchial anesthesia. In this study, one-lung ventilation with an FIO2 of 0.99 resulted in a PaO2 of less than 80 mmHg in five of 17 patients; in two patients, PaO2 was less than 60 mmHg. Table 3 lists prior studies that have examined the effects of mechanical ventilation in the dependent lung on gas exchange during endobronchial anesthesia. Our data support the use of large VT (at ZEEP) when ventilation is confined to the dependent lung. This practice is supported by the finding of Kerr et al. that a decrease in VT during one-lung ventilation resulted in an increase in Qs/Qt from the beginning to the end of surgery.

In our study, 10 cmH2O PEEP decreased mean PaO2, but only with large VT. This finding agrees with that of Tarhan and Lundborg and Capan et al., who also showed a decrease in PaO2 with 10 cmH2O PEEP. Two of our patients showed important improvements in PaO2 with PEEP. These patients may be distinguished from the majority by two variables: a relatively low PaO2 (less than 80 mmHg) during one-lung ventilation.
before PEEP was applied, and a Q_s/Q_t above 0.25 during two-lung ventilation. A similar circumstance can be found in the data from Tarhan and Lundborg. They found that with the application of 10 cmH$_2$O PEEP, P_{aO_2} decreased in ten patients, was unchanged in one, and increased in three. Of these three patients, two had P_{aO_2} values that prior to PEEP were less than 80 mmHg.

Evaluating our own data and those of other authors, we believe the major predisposing mechanisms to be as follows. In healthy volunteers in the lateral position (chest closed), there is a reduction in FRC that is most marked in the dependent lung. In addition, with anesthesia, muscle paralysis, and controlled ventilation, a loss in diaphragmatic forces further contributes to the decrease in FRC and an abnormal distribution of ventilation. These factors (dependent lung atelectasis and maldistribution of ventilation in relation to perfusion) result in an increase in venous admixture, and may explain our mean Q_s/Q_t of 0.22 (Stage 1).

P_{aO_2} and Q_s/Q_t did not change between Stage 1 and Stage 6 (before and after one-lung ventilation). In particular, patients who underwent pneumonectomy had no clinically significant changes in P_{aO_2} or Q_s/Q_t between Stages 1 and 6. These data support the possibility that much of the Q_s/Q_t during two-lung ventilation can be related to the dependent lung. During one-lung ventilation, Q_s/Q_t increased greatly (table 2). This increase may have occurred not only by continued perfusion of the nondependent (collapsed) lung, but also in areas of dependent-lung atelectasis. The contribution of the latter is supported by the observed effect of changing tidal volume to the dependent lung. In addition, the direct correlation between Q_s/Q_t during two-lung ventilation and the magnitude of improvement in Q_s/Q_t following the application of PEEP further supports the hypothesis that dependent-lung atelectasis is an important variable. The exact division of Q_s/Q_t between nondependent and de-
OXYGENATION DURING ONE-LUNG ANESTHESIA

Table 3. Effect of Tidal Volume (Vₜ) and Positive End-Expiratory Pressure (PEEP) on Pulmonary Oxygen Exchange during Endobronchial (One-lung) Anesthesia

<table>
<thead>
<tr>
<th>Investigator</th>
<th>Vₜ (ml/kg)*</th>
<th>PEEP (cmH₂O)</th>
<th>PaO₂</th>
<th>Q₁/Q₂</th>
<th>Q₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>Khanam and Branthwaite¹¹</td>
<td>7–10†</td>
<td>0</td>
<td>NS</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Flacke et al.¹²</td>
<td>8–15</td>
<td>0</td>
<td>NS</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Katz et al.¹³</td>
<td>7–14</td>
<td>0</td>
<td>†</td>
<td>†</td>
<td>NS</td>
</tr>
<tr>
<td>Tarhan and Lundborg¹⁴</td>
<td>Manual ventilation</td>
<td>0–10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Khanam and Branthwaite¹⁴</td>
<td>Variable</td>
<td>0–10</td>
<td>NS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caplan et al.¹⁵</td>
<td>7</td>
<td>0–10</td>
<td>NS</td>
<td>NS</td>
<td>†</td>
</tr>
<tr>
<td>Katz et al.¹⁷</td>
<td>14</td>
<td>0–5</td>
<td>NS</td>
<td>NS</td>
<td></td>
</tr>
</tbody>
</table>

*Mechanical ventilation.
† Not specifically stated, value approximated from data.

Dependent lung cannot be delineated using the data available in this study.

The multiple linear-regression analysis of the variables affecting a change in CaO₂ with the application of PEEP during one-lung ventilation strongly suggests that distribution of pulmonary blood flow between ventilated and nonventilated lung regions (Q₁/Q₂) is the major contributing factor, independent of CaO₂.

Two major factors interacted in the determination of Q₁/Q₂. First, the ventilatory maneuvers could have influenced the volume of ventilated dependent lung; and, second, the distribution of blood between ventilated (Q₁) and nonventilated (Q₂) lung could be influenced by the intra-alveolar pressure in the former. Increased intra-alveolar pressure would increase pulmonary vascular resistance in ventilated areas and could thereby re-portion Q₁ and Q₂. This redistribution of blood flow has been shown experimentally in the dog by Finley et al.²¹ Q₁/Q₂ would ultimately be determined by the balance between dependent-lung recruitment and increased vascular resistance in that lung. The data show a significant effect of Vₜ on Q₁/Q₂ (fig. 3) but no effect of PEEP (fig. 4). Large Vₜ (16 per cent of TLC) ventilation to the dependent lung improved compliance (fig. 3). Furthermore, no significant change in Q₁ occurred. The explanation for this improvement in compliance is probably a recruitment of atelectatic dependent lung at end inspiration, and this might be expected if the dependent lung had an initial volume that was very low. Since the application of PEEP also increased the volume of ventilated lung but did not improve Q₁/Q₂ or PaO₂, we must conclude that it also caused an offsetting effect by redistributing pulmonary blood flow. The beneficial effect of large tidal volumes on Q₁/Q₂, and therefore PaO₂, suggests an improvement in ventilated lung volume without this offsetting redistribution in blood flow to unventilated areas.

We found an inverse correlation between the preoperative percentage of predicted FEV₁ (an index of prior lung disease) and PaO₂ during one-lung ventilation (fig. 2). Our explanations for this inverse correlation are only speculative. It is possible that some patients with a low FEV₁ had this reduction as a consequence of unilateral (restrictive) pulmonary disease (mainly carcinoma), causing a redistribution of pulmonary perfusion preoperatively away from the operative lung. With acute atelectasis in the operative lung, there would be less perfusion of this lung, or redistribution to it, and therefore a higher PaO₂ during one-lung ventilation. Kerr et al.⁷ found that patients with pulmonary lesions had smaller decreases in PaO₂ during one-lung ventilation than those undergoing thoracotomy for nonpulmonary procedures.

An alternative explanation that does not depend on an uneven distribution of pulmonary abnormality might be as follows. The increased static lung volumes (TLC, FRC, and RV) (table 1) indicate overdistension compatible with loss of lung elastic recoil and obstructive lung disease. During atelectasis, pulmonary vessels may collapse and kink.²² This has been documented in lungs of normal dogs by Benumof.²³ However, a loss of elastic recoil may permit a greater physical deformity of the pulmonary vasculature during atelectasis. The vascular resistance in such lungs would then be accentuated, and redistribution of pulmonary blood flow during one-lung anesthesia minimized. Our data do not permit further examination of these possibilities.

The wide variability of PaO₂ during one-lung ventilation may also be due in part to the variability of alveolar hypoxic pulmonary vasoconstriction.²⁴ Miller and Hales²⁵ described two populations of dogs, one with a strong initial response (within 7 min of alveolar hypoxia achieved by nitrogen ventilation of one lung), and the other with a weak initial response that became stronger with time (approximately 4–6 h). The strong responders had a 30 per cent decrease in perfusion to the hypoxic lung on the first hypoxic challenge, whereas the weak
responders had only a 5 per cent decrease. Thus, an inherent form of host variability may contribute to the wide range of P_{A\text{o}_{2}} seen during endobronchial anesthesia. The use of an F_{1\text{\text{O}_{2}}} of 0.99 and halothane also may have contributed to the variability in P_{A\text{o}_{2}} during endobronchial anesthesia.

We conclude that when employing the technique of endobronchial anesthesia, one must be aware that pulmonary oxygen exchange is impaired. Despite the use of an F_{1\text{\text{O}_{2}}} of 0.99, P_{A\text{o}_{2}} may fall to low levels. The degree of impairment in P_{A\text{o}_{2}} correlates inversely with the preoperative percentage of predicted F_{E\text{\text{O}_{2}}} Therefore, patients with normal preoperative pulmonary function, as assessed by F-V loops, are not without risk of hypoxemia. Frequent blood-gas monitoring is imperative for early detection of this hypoxemia. In this study, a V_{T} of 16 per cent of TLC at ZEEP most frequently resulted in the best oxygen exchange with a reduction in Q_{0}, or evidence of over-distension of the dependent lung. In addition, the application of 10 cm H_{2}O PEEP generally resulted in a decrease in P_{A\text{o}_{2}}, probably secondary to a redistribution of pulmonary perfusion. These beneficial effects of large tidal volumes without PEEP are not consistent, and the high degree of variability is another reason for monitoring arterial oxygen tension during one-lung anesthesia.

Acknowledgment

The authors gratefully acknowledge manuscript reviews by Drs. A. R. Foster, W. K. Hamilton, and G. M. Ozanne, the use of the Dr. Richard M. Shulman's program for calculating physiological shunt; the technical assistance of Patrick D. Pangborn, R. R. T., and the editorial advice of Pauline Sundt.

References

APPENDIX

Equations

\[
C_{\text{O}_{2}} = (\text{Hgb})(S_{\text{O}_{2}}(\gamma) + (P_{\text{A}_{\text{O}_{2}}})(\beta) \quad (1)
\]

\[
P_{\text{A}_{\text{O}_{2}}} = P_{\text{Inh}} - P_{\text{A}_{\text{O}_{2}}} \left| \frac{F_{\text{I}_{\text{O}_{2}}}}{R} \right| \quad (2)
\]

When \(P_{\text{O}_{2}} \geq 0.995; \)

\[
C_{\text{O}_{2}} = \left[(P_{\text{A}_{\text{O}_{2}}})(\beta) + C_{\text{A}_{\text{O}_{2}}} \right] \quad (3)
\]
When $S_{aO_2} < 0.995$:

$$C_{aO_2} = [P(A-a)O_2]|\beta| + C_{aO_2} + [(S_{aO_2})(Hgb(1 - S_{aO_2})) - (S_{aO_2})(Hgb)] (1.34)$$

$$\frac{\dot{Q}_v}{\dot{Q}_t} = \frac{C_{aO_2} - C_{aO_2}}{C_{aO_2} - C_{aO_2}}$$ (4)

Abbreviations Used in Appendix

- β: solubility of O_2 in plasma (0.003 ml O_2 per 100 ml of blood per mmHg of O_2 tension)
- C_{aO_2}: arterial oxygen content
- C_{aO_2}: end-pulmonary capillary oxygen content
- C_{vO_2}: mixed venous oxygen content
- F_{iO_2}: fractional concentration of inspired oxygen

$$\gamma = 1.34 \text{ ml of } O_2 \text{ per gram of hemoglobin per 100 ml of blood}$$

Hgb: hemoglobin (grams per 100 ml of blood)

PAO_2: alveolar oxygen partial pressure

P_{aO_2}: arterial oxygen partial pressure

P_{EiO_2}: partial pressure of inspired oxygen $[(P_{bar} - PA_{H_2}O) \times F_{iO_2}; P_{bar}$: barometric pressure in mmHg; $PA_{H_2}O$: water vapor pressure]

P_{NIO_2}: mixed venous oxygen partial pressure

\dot{Q}_v/\dot{Q}_t: physiologic shunt

$R = V_{CO_2}/V_{O_2}$; assumed $= 0.85$

SAO_2: arterial oxygen saturation

$SvCO_2$: arterial carbon monoxide saturation

SvO_2: calculated end-pulmonary capillary oxygen saturation (assumed to be 100 per cent)

SvO_2: mixed venous oxygen saturation

NOTICE TO COPIERS

The appearance of the code at the bottom of the first page of an article in this journal indicates the copyright owner's consent that copies of the article may be made for personal or internal use, or for personal or internal use of specific clients. This consent is given on the condition, however, that the copier pay the stated per-copy fee through the Copyright Clearance Center, Inc., 21 Congress Street, Salem, Massachusetts 01970, for copying beyond that permitted by Sections 107 or 108 of the U. S. Copyright Law. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale.