McAlpine\(^1\) concerning histologic changes in transient paralysis. Instead of paraphrasing, let us this time quote the original source. "The effects of stretching a peripheral nerve beyond the limit of physiologic elasticity . . . produce damage to epineural vessels, with resultant patches of ischemic changes in nerve fibers."\(^2\) Granted these observations were made on somatic fibers, but we theorize a milder form of this same stretch injury may explain the transient postoperative sympathetic dysfunction observed in our patient.

According to Dr. Vandam, our "gross diagram of a torso" did not illustrate the anterior relation of the cervical sympathetic trunk to cervical transverse processes. However, we felt it adequate to illustrate the concept of misalignment of the thoracic and cervical vertebrae (which was its primary purpose). Figure 1 illustrates the cervical sympathetic chain in greater detail, further demonstrating how it may be stretched from inadequate head support in a patient placed in the lateral position.

In answer to raised questions, intraoperative blood pressures were monitored via a right radial artery catheter and a left arm blood pressure cuff. Both pressures were approximately equal and unchanged in the lateral position. Blood pressure remained within 20 per cent control throughout the entire anesthetic. When Horner's syndrome was observed postoperatively, there were no signs or symptoms to suggest a brachial plexus insult. No carotid bruises were auscultated, although occult disease may have existed. Chest x-ray did not demonstrate evidence of Pancoast tumor or cervical rib but did reveal lumbar and thoracic spine arthritis. It was on this basis that we assumed cervical vertebral arthritis and/or spurring may have existed.

Although stretch of the cervical sympathetic chain is unusual, in this case, we are still unable to conjure any other diagnosis to better explain the findings. The need for strict attention to spinal alignment in patients placed in the lateral position remains essential.

REFERENCES

(Accepted for publication February 23, 1982.)

Further Considerations Regarding the Components of an Effective Test Dose Prior to Epidural Block

To the Editor:—In the recent clinical report by Moore and Batra\(^3\), it was stated that the purpose of the study was to determine the components of a "single" test dose of a local anesthetic solution which, within two minutes from its injection, would produce clinical evidence that the needle has penetrated either a blood vessel or the dura. In the report, it was shown that the addition of epinephrine 1:200,000 to 3 ml of local anesthetic produces a clinically detectable transient tachycardia if injected into a vein. However, the effect of a subarachnoid injection of 3 ml of local anesthetic was not studied. Three ml of 3 per cent chloroprocaine (90 mg) should produce an immediate block,\(^2\) as also should 3 ml of 0.75 per cent bupivacaine (22.5 mg),\(^3\) but the level of anesthesia might reach the upper thoracic dermatomes.\(^4\) However, neither 3 ml of 1.5 per cent mepivacaine nor
3 ml of 1.5 per cent lidocaine (45 mg) might produce
definite signs of spinal anesthesia within two minutes.
Mepivacaine in 1.5 per cent concentration is apparently
ineffective as a spinal anesthetic whereas higher concen-
trations are effective. Similarly, lidocaine normally is
used in a concentration of at least 5 per cent for in-
trathecal use and therefore, 1.5 per cent might not pro-
duce significant spinal anesthesia within two minutes.
Thus, it would seem that 3 ml of 0.75 per cent bu-
pivacaine or 3 per cent chloroprocaine both with epi-
 nephrine 1:200,000 should provide clinical evidence of
either an intravascular or intrathecal injection within two
minutes. But 3 ml of 1.5 per cent lidocaine or mepiva-
caine both with epinephrine 1:200,000 could provide
evidence of an intravascular but possibly not an intrathe-
cal injection.
Perhaps the intrathecal injection of small volumes of
these local anesthetic solutions should be specifically
studied.

In reply:—Morison’s two primary concerns are: 1)
doses of 90 mg of chloroprocaine and 22.5 mg of bupi-
vacaine “might” result in high or total subarachnoid
block; and 2) 45 mg of either lidocaine or mepivacaine
“might” not produce significant spinal anesthesia in two
minutes.

Whether high or total spinal block results from the
unintentional injection of a local anesthetic drug depends
on many factors other than dosage, e.g., baricity of the
solution, position of the patient, intra-abdominal pres-
sure (obesity, pregnancy, etc), height, and so forth. Re-
gardless of these, 90 mg of chloroprocaine injected into
the subarachnoid space is unlikely to result in high or
total spinal block. From all indications, a 3-ml dose of
0.75 per cent hyperbaric bupivacaine (22.5 mg in 8.25
per cent or 8.0 per cent dextrose, specific gravity ap-
proximately 1.035) would do so. However, 0.75 per
cent bupivacaine used for epidural block is isobaric (spe-
cific gravity, 1.007) and up to 4 ml of a 0.5 per cent
isobaric solution (20 mg, specific gravity 1.006) has been
used safely for spinal anesthesia. Morison and co-
workers have injected 3 ml of a 0.75 per cent isobaric
solution of bupivacaine unintentionally into the sub-
arachnoid space while attempting intermittent epidural
block in two parturients with no untoward sequelae,
although analgesia to T1 and T4 ensued. To date, we
have not injected 3 ml of 0.75 per cent isobaric bupi-
vacaine subarachnoidally, so that comments on its pos-
sible effects would only be conjecture. In summary, even
if a test dose containing 22.5 mg of bupivacaine did result
in high or total spinal anesthesia, it would be: 1) an
expected possible result of a test dose; 2) in all probability
immediately recognized; and 3) treated correctly, as in
the previously noted cases. Conversely, if a high or total
spinal block occurs when not anticipated from a large
dose—10 ml (75 mg) or more used to establish the re-
quired analgesia for an operative procedure—the out-
come may be catastrophic. Furthermore, treating a high
or total spinal block resulting from 22.5 mg, as compared
to 75 mg or more, would seem to be a more desirable
situation.

Secondly, Morison questions whether 3 ml of 1.5 per
cent lidocaine or mepivacaine will produce significant
spinal anesthesia in two minutes. A dose of 45 mg of
either drug, whether it is in 3 ml (1.5 per cent solution)
or in 0.9 ml (5 per cent solution) will consistently produce
clinical evidence of spinal analgesia within two minutes
(excluding technical errors). However, it may or may not
produce analgesia adequate for a surgical procedure (e.g.,
an intra-abdominal operation). Even reference 6 cited
by Morison states that onset of anesthesia with lidocaine
is almost immediate. Furthermore, a 2-ml ampule of 1.5
per cent lidocaine (30 mg) in 7.5 per cent dextrose is
available for spinal anesthesia for vaginal deliveries,
and it is effective. Although mepivacaine is no longer avail-
able for spinal anesthesia, our experiences as well as a
careful review of mepivacaine for spinal block support
the effectiveness of 45 mg in producing clinical evidence
of spinal anesthesia within two minutes.

Finally, what really is needed is a single-dose ampule

References
1. Moore DC, Batra MS: The components of an effective test dose
2. Foldes FF, McNall PG: 2-chloroprocaine: A new local anesthetic
3. Moore DC: Spinal anesthesia: Bupivacaine compared with tetra-
4. Fargas-Balbjak A, McCheney J, Morison DH: The efficacy of
 bupivacaine 0.75 per cent as an epidural test dose. Can Anaesth
5. Poe MF, Dornette WHL, Johnson CH: Clinical observations on
 the intrathecal use of mepivacaine. Anesthesiology 23:678–
 681, 1962
6. Scott DB, Cousins MJ: Clinical pharmacology of local anesthetic
 agents, Neural Blockade in Clinical Anesthesia and Manage-
 ment of Pain. Edited by Cousins MJ, Bridenbaugh PO. Phil-
 adelphia/Toronto, JB Lippincott Company, 1980, p 92

(Accepted for publication February 2, 1982)