Effects of Nitrous Oxide on the Cerebrovascular Tone, Oxygen Metabolism, and Electroencephalogram of the Isolated Perfused Canine Brain

James H. Fitzpatrick, Jr., M.S., M.D.,* and David D. Gilboe, Ph.D.†

Nitrous oxide has been reported to act both as a stimulant and as a depressant of cerebral oxygen metabolism (CMRO₂) and blood flow under a variety of experimental conditions in the intact animal. The isolated brain preparation is advantageous because it permits direct measurement of blood flow and allows the study of drug effects without interference from other organ systems or drugs. In this study, six isolated perfused canine brain preparations were used to compare the CMRO₂, cerebral vascular resistance (CVR), and the EEG of brains perfused with normocapnic, normoxic blood equilibrated with either 70% N₂O or 70% N₂. There was no significant change in CMRO₂. Cerebral vascular resistance fell [16.4% ± 3.4% SEM (P < 0.015)] during exposure to N₂O. The EEG pattern was reduced in amplitude, but showed an increase in both low-voltage β activity (14–40 Hz), and 3–5 Hz activity. In the isolated brain, N₂O reduces cerebral vascular tone while exhibiting no effect on cerebral oxygen metabolism. (Key words: Anesthetics, gases: nitrous oxide. Brain: blood flow; electroencephalography; oxygen consumption.)

During the past two decades the effects of nitrous oxide on cerebral blood flow and metabolic activity were discussed in a number of reports; however, results of those studies were often contradictory.1–2 Wollman et al. observed a 23% decrease in cerebral metabolic rate for oxygen (CMRO₂) in humans.3 Theye and Michenfelder, in a study with dogs, found an 11% increase in CMRO₂,2 while Carlsson et al. using rats, observed no change in CMRO₂.3 Similar variability was seen in studies of cerebral blood flow and cerebral vascular tone. The dissimilarity in results probably can be accounted for by differences in background anesthetic drugs and in measurement techniques.

In an attempt to overcome some of the limitations of other studies, we compared the metabolic and physiologic effects of 70% nitrous oxide with those of 70% nitrogen in a normoxic, normocapnic system used to perfuse the isolated canine brain. In these experiments no other organs were present, no other drugs were administered during the studies, and flow was measured directly.

Materials and Methods

The brains of six mongrel dogs (8–15 kg) were surgically isolated as described in a previous communication.4 The procedure conformed to the American Physiological Society standards for treatment of experimental animals. Intubation was facilitated with intravenous succinylcholine. Anesthesia was induced and maintained with a halothane–oxygen mixture, and the dog was ventilated mechanically. A tracheostomy was performed, and a cutdown was made for placement of the femoral artery cannula used to monitor blood pressure. The soft tissue surrounding the skull was excised surgically by electrocautery. The carotid arteries were identified, and all branches except the internal carotid and the anatomic branch of the internal maxillary artery were ligated. The mandible, zygomatic arches, snout, and eyes were removed. Heparin was administered and T-tubes were then placed in the common carotid arteries at the level of the cranial thyroid artery. No other agents were administered during the preparation. A laminectomy was performed at the level of the second cervical vertebra, and the spinal cord was ligated and transected. At this time, mechanical perfusion was begun and the carotid arteries were severed and ligated proximal to the T-tubes. Venous drainage was accomplished via a threaded Luer connector fixed in a small hole drilled into the confluence of sinuses. The vertebral arteries were identified and ligated at the level of C2. The validity of the preparation was assessed in terms of oxygen utilization and the EEG pattern.5,10

The perfusion apparatus consisted of two separate roller pump-membrane oxygenator systems that were interconnected by means of a rotary valve which permitted rapid change from one perfusion system to the other without loss of flow or perfusion pressure. The systems were primed with blood obtained from an immunologically compatible donor dog. This blood was conditioned11 and diluted to an hematocrit of 30%.

Blood pH, PO₂, and PCO₂ were measured using an IL 313 Blood Gas Analyzer (Instrumentation Laboratory Inc.) with suitably calibrated electrodes. Blood oxygen content was determined with a Lex-O₂-Con (Lexington Instruments Corp.), which was calibrated with a VanSlyke blood-gas apparatus. Plasma glucose was assayed by a glucose-oxidase method (Beckman Glucose...
Analyzer). Perfusion pressure was recorded continuously on a Grass Instruments Polygraph (Model 75D) utilizing Statham P-23AA transducers. A 6-lead EFG was recorded continuously on the Grass Polygraph, and magnetically recorded using a Wolff Industries 4-channel FM cassette tape recorder. Cup electrodes filled with electrode paste were placed directly onto the calvarium and held in place with bone wax. Frontoparietal, parieto-occipital, and occipitofrontal leads on both the right and left sides were recorded. Fourier transform frequency-amplitude spectrum analysis was performed on the taped data by means of a program developed for the PDP 11/34 computer. Venous blood was analyzed for halothane by the method of Cowles et al.12

Following isolation, the brain was perfused for 1 h with a normoxic, normocapnic mixture of blood equilibrated with 70\% N\textsubscript{2}, 25\% O\textsubscript{2}, and 5\% CO\textsubscript{2}. During this time most of the small amount of halothane remaining in the system was eliminated from the oxygenator, and the cerebral consumption of oxygen reached values normally observed in unanesthetized dogs. The venous halothane concentration after 45 min of perfusion was 20.2 ppm. Control samples of arterial and venous blood were analyzed for pH, P\textsubscript{O\textsubscript{2}}, P\textsubscript{CO\textsubscript{2}}, oxygen content, and glucose concentration. The arterial pH was maintained between 7.38 and 7.42, the P\textsubscript{O\textsubscript{2}} between 170 and 190 mmHg, the P\textsubscript{CO\textsubscript{2}} between 38 and 42 mmHg, and the arterial glucose between 80 and 100 mg/dl. Perfusion pressure and the EFG were recorded continuously throughout the experiment. Although cerebral blood flow was maintained between 55 and 70 ml·100 g-1·min-1, it remained constant within the individual studies. Blood flow was measured directly by collecting venous blood from the confluence of sinuses for 1 min in a graduated cylinder.

After the control samples were taken, perfusion was switched to a second pump-oxygenator system which was primed with blood equilibrated with a normocapnic, normoxic gas mixture containing 70\% N\textsubscript{2}O. Blood samples were taken at 1, 5, 10, and 15 min for blood-gas, glucose, and oxygen analysis. Blood flow also was determined at these same intervals. Following 15 min of perfusion with blood containing N\textsubscript{2}O, perfusion was returned to the control oxygenator for one hour. Blood samples were obtained and flows measured at 5, 15, 30, and 60 min following exposure to N\textsubscript{2}O.

Although the system contained two bubble traps, preliminary experiments indicated that air microemboli containing N\textsubscript{2}O reached the brain after 25 to 30 min of perfusion with experimental blood. Because this caused a marked increase in CVR and decrease in CMRO\textsubscript{2}, perfusion with N\textsubscript{2}O was limited to 15 min. There were no problems with air emboli during perfusion with control blood. At the conclusion of the experiment, the brain was removed from the calvarium and weighed.

The cerebral metabolic rate for oxygen (CMRO\textsubscript{2}) in ml·100 g-1·min-1 is equal to (A − V)·F/W where (A − V) is the arteriovenous oxygen content difference in ml O\textsubscript{2}/100 ml blood, F is blood flow in ml/min, and W is brain weight in grams. Cerebral vascular resistance (CVR) in mmHg/(ml·100 g-1·min-1) is the perfusion pressure in mmHg, divided by the blood flow in ml/min per 100 g of brain weight. Each dog served as its own control.

The mean and standard error of the mean (SEM) for

Table 1. Results After Fifteen Minutes of Perfusion with 70\% Nitrous Oxide

<table>
<thead>
<tr>
<th>DOG</th>
<th>1014</th>
<th>1018</th>
<th>1019</th>
<th>1021</th>
<th>1024</th>
<th>1026</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMRO\textsubscript{2} (Cont)</td>
<td>5.51</td>
<td>4.84</td>
<td>5.82</td>
<td>5.33</td>
<td>5.53</td>
<td>6.16</td>
<td>5.53 ± 0.20 SEM</td>
</tr>
<tr>
<td>CMRO\textsubscript{2} (N\textsubscript{2}O)</td>
<td>5.33</td>
<td>5.32</td>
<td>5.94</td>
<td>5.99</td>
<td>5.89</td>
<td>5.87</td>
<td>5.57 ± 0.16 SEM</td>
</tr>
<tr>
<td>CMRO\textsubscript{2} (Post)</td>
<td>4.67</td>
<td>4.67</td>
<td>5.86</td>
<td>5.04</td>
<td>5.17</td>
<td>5.58</td>
<td>5.26 ± 0.23 SEM</td>
</tr>
<tr>
<td>CMRO\textsubscript{2} Change</td>
<td>-3.2%</td>
<td>+9.8%</td>
<td>+2.1%</td>
<td>-3.5%</td>
<td>+6.6%</td>
<td>-4.7%</td>
<td>1.2% ± 2.7 SEM</td>
</tr>
<tr>
<td>PV\textsubscript{O\textsubscript{2}} (Cont)</td>
<td>36</td>
<td>36</td>
<td>33</td>
<td>31</td>
<td>34</td>
<td>30</td>
<td>33.3 ± 1.1 SEM</td>
</tr>
<tr>
<td>PV\textsubscript{O\textsubscript{2}} (N\textsubscript{2}O)</td>
<td>36</td>
<td>36</td>
<td>34</td>
<td>31</td>
<td>34</td>
<td>30</td>
<td>32.6 ± 1.1 SEM</td>
</tr>
<tr>
<td>PV\textsubscript{O\textsubscript{2}} (Post)</td>
<td>36</td>
<td>34</td>
<td>34</td>
<td>29</td>
<td>35</td>
<td>30</td>
<td>33.0 ± 1.3 SEM</td>
</tr>
<tr>
<td>PV\textsubscript{O\textsubscript{2}} Change</td>
<td>0</td>
<td>-5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-0.7 ± 0.9 SEM</td>
</tr>
<tr>
<td>CVR (Cont)</td>
<td>4.47</td>
<td>3.72</td>
<td>4.28</td>
<td>3.36</td>
<td>1.95</td>
<td>2.23</td>
<td>3.33 ± 0.46 SEM</td>
</tr>
<tr>
<td>CVR (N\textsubscript{2}O)</td>
<td>3.14</td>
<td>3.13</td>
<td>3.86</td>
<td>2.88</td>
<td>1.68</td>
<td>2.01</td>
<td>2.78 ± 0.36 SEM</td>
</tr>
<tr>
<td>CVR (Post)</td>
<td>3.37</td>
<td>3.68</td>
<td>4.91</td>
<td>3.58</td>
<td>2.07</td>
<td>2.20</td>
<td>3.50 ± 0.47 SEM</td>
</tr>
<tr>
<td>CVR Change</td>
<td>-29.8%</td>
<td>-16.0%</td>
<td>-9.5%</td>
<td>-14.2%</td>
<td>-19.3%</td>
<td>-9.7%</td>
<td>16.4% ± 3.4% SEM</td>
</tr>
</tbody>
</table>

Cont = Control; N\textsubscript{2}O = after 15 min of 70\% nitrous oxide; Post = after 15 min of reperfusion with nitrogen and oxygen.

Units: CMRO\textsubscript{2}, ml·100 g-1·min-1; PV\textsubscript{O\textsubscript{2}}, mmHg; and CVR, mmHg/(ml·100 g-1·min-1).
the changes in CMRO₂ and CVR were calculated and their significance assessed using a single tailed Student's t test for paired data.

Results

Compared to control values, the change in CMRO₂ during N₂O perfusion was variable, decreasing in three brains, and increasing in the remaining three (table 1). The change approached 10% in only one brain and averaged an insignificant 1.2% ± 2.7% SEM (p = 0.32). No change in venous P_O₂ was observed during N₂O administration.

The cerebral vascular resistance decreased in all dogs during perfusion with blood containing N₂O (table 1) falling an average of 16.4% ± 3.4% SEM after 15 min of perfusion with experimental blood. This change was significant (P < 0.015). The fall in resistance was gradual, and continued throughout the 15 min of exposure to N₂O (fig. 1).

The pattern of the 6-lead EEG exhibited an increase in both low-voltage β (14–40 Hz), and 3–5 Hz activity during perfusion with blood equilibrated with N₂O. Figure 2 is a representative frequency amplitude spectrum. From this figure, it can be seen that changes occur quickly following the administration of N₂O; however, the EEG reverts rapidly to a control pattern following removal of N₂O.

Discussion

The diverse results observed by other investigators with respect to the effects of N₂O on cerebral vascular...
tone and oxygen metabolism are probably the result of factors unrelated to \(N_2O \). In a recent editorial, Siejö commented on several problems involved in investigations of cerebral blood flow and metabolism.\(^{15}\) Among them are: 1) the effects of anesthetics, 2) drug interactions, 3) species differences, 4) problems with flow measurements, and 5) the variety of techniques used to measure \(\text{CMRO}_2 \).

Many previous studies involved either premedication or simultaneous use of other drugs such as thiopental or halothane. Effects of \(N_2O \) and other drugs are not necessarily additive.\(^{14}\) Flows were measured by indirect techniques except in the Thye and Michenfelder study.\(^2\) Also, intact animals were used. The Carlsson et al. investigation provides a classic example of the influence that other organs and drugs may have on cerebral metabolic and flow studies.\(^3\)

The isolated brain preparation overcomes several of these problems. There are no effects from anesthetics other than the one under investigation, there are no other drugs involved, flow is measured directly from only the vascular bed under study, and blood oxygen content is measured using a fuel cell.

The major disadvantages of the preparation include a gradual rise in CVR, regional blood flow is not identical with in vivo values, flow is not physiologic, and the cerebrovascular bed is denervated. The gradual rise in CVR is probably caused by circulating vasoactive substances such as 5-hydroxytryptamine, ADH, kinins, and catecholamines. Additionally, microemboli occasionally escape the filters and bubble traps. Studies are done only if metabolic and electrophysiologic criteria of viability are met.\(^10\) This continuous rise in CVR makes it difficult to quantitate the observed changes in a simple way, but trends and magnitudes can be measured, particularly if they are seen consistently in a number of experiments. Regional blood flow to the hindbrain areas is reduced.\(^15\) This could have an effect on the EEG since some areas of the reticular activating system are not normally perfused.

The results indicate that \(N_2O \) had a significant vasodilating effect on the cerebral vessels. In general, decreases in vascular tone caused by drugs may be mediated by adenosine, direct \(\beta \) stimulation, direct action on smooth muscle cells, or inhibition of endogenous norepinephrine.\(^{16-18}\) Several of these mechanisms may be operant here. Nitrous oxide has been shown to decrease the contractile force of the dog and cat myocardium.\(^{19,20}\) In vivo, \(N_2O \) stimulates sympathetic activity, and increases circulating norepinephrine levels.\(^{21,22}\) Thus, changes in myocardial contractility and in circulating catecholamine levels may be responsible for some of the changes in CBF and vascular tone observed in the intact animal.

Although the cranial cervical ganglion was ablated and the extracranial vessels denervated, the neuromuscular junctions of the intracranial vessels were intact and maintained their norepinephrine stores in this preparation. Studies done in this laboratory have demonstrated adrenergically mediated changes in vascular tone of cerebral vessels of the isolated brain preparation, as well as changes mediated by drugs acting through other mechanisms.\(^{23-25}\) Thus, vascular tone could have been influenced by endogenous norepinephrine stored in these nerve endings, as well as by circulating vasoactive substances such as catecholamines, prostaglandins, ADH, kinins, and 5-hydroxytryptamine.\(^{16}\) Musch et al. reported that \(N_2O \) causes a metabolic acidosis in the extracellular fluid environment of the brain.\(^{26}\) This could lead to vasodilation by direct action of the hydrogen ion on arteriolar smooth muscle.\(^{27}\) Adenosine has also been proposed to have a significant role in the regulation of cerebrovascular tone.\(^8\) The vasodilatation of the cerebral vessels by \(N_2O \) seen in this preparation is similar to the effects of anesthetic agents on the microvasculature as was discussed in reviews by Longnecker and Harris\(^{28}\) and Altura et al.,\(^{29}\) and in a report on \(N_2O \) by Longnecker.\(^{30}\)

There was no significant effect of \(N_2O \) on cerebral oxygen metabolism. During the preparation the brain is deafferented. Consequently, it receives no stimuli during the experiment. Although it seems likely that the brain is in a sleep-like state during perfusion with control blood,\(^{31}\) the \(\text{CMRO}_2 \) values measured during this period are similar to those observed in the intact, awake dog.\(^2\) The control EEG pattern was comparable to those observed in the intact animal, while the patterns during \(N_2O \) perfusion and recovery parallel the effects seen clinically.\(^32\)

In an earlier study,\(^33\) we demonstrated that administration of sodium pentobarbital lowered the cerebral metabolic rate for oxygen in the isolated dog brain. Hostetler et al.\(^{34}\) and Watanabe et al.\(^{35}\) obtained similar results in the isolated brains of the monkey and cat, respectively. Thus, isolated brains behave in much the same manner as the intact brain where it is also wise to avoid use of barbiturates and other anesthetic agents when studying metabolism.

In this study, we have shown that \(N_2O \) administered at a 70% concentration is a significant dilator of cerebral vessels, and has an insignificant effect on \(\text{CMRO}_2 \). Additional experiments with other agents are in progress. Further studies on the effects of \(N_2O \) on vascular tone following adrenergic blockade or pre-experimental ablation of the cranial cervical ganglion would be of interest. These results should also offer comfort to those investigators who use animals anesthetized with 70% \(N_2O \) as controls during studies of cerebral metabolism.

The authors thank Ms. Jan Yanushka for her technical assistance, David C. Flemming, F.F.A.R.C.S., for his help in editing the manuscript, and Ohio Medical Anesthetics who generously provided the blood halothane analysis.

References

 pelindation to nitrous oxide and d-tubocurarine. ANES-
 THESIOS 26:329–334, 1965
2. Teyte RA, Michenfelder JD: The effect of nitrous oxide on ca-
 nine cerebral metabolism. ANESTHESIOLOGY 29:1119–1124,
 1968
 on oxygen consumption and blood flow in the cerebral cortex
 metabolism during morphine-nitrous oxide anesthesia in man.
 ANESTHESIOLOGY 47:16–18, 1977
6. Stoyka WW, Frankel DZ, Kav JC: The linear relation of cerebral
 blood flow to arterial oxygen saturation in hypoxic hypoxia
 induced with nitrous oxide or nitrogen. Can Anaesth Soc J
7. Oshita S, Ishikawa T, Tokutsu Y, et al: Cerebral circulatory and
 metabolic stimulation with nitrous oxide in the dog. Reconfir-
 mation by the simultaneous measurement of cerebral blood
 flow using direct and Kety-Schmidt methods. Acta Anaesthe-
8. Gilboa DD, Betz AL, Langebartel DA: A guide for the isolation
 cerebral oxygen uptake to EEG frequency in isolated canine
10. Fitzgerald JH Jr, Gilboa DD: Criteria of viability in isolated brain
 uptake by the isolated dog brain. Am J Physiol 219:767–773,
 1970
12. Cowles AL, Burgstedt HH, Gillies AJ: Solubilities of ethylene,
 cyclopropane, halothane, and diethyl ether in human and dog
 blood at low concentrations. ANESTHESIOLOGY 35:203–211,
 1971
13. Siesjö BK: Cerebral metabolic rate in hypercarbia—A contro-
14. Fingl E, Woodbury DM: The Pharmacological Basis of Thera-
 York, Macmillan, 1975, p 36
15. Drewes LR, Fraizen L, Levin A: Blood flow in the isolated, per-
 fused canine brain: Normal oxygenation vs. anoxic anoxia. Physiologist 18:198, 1975
17. Altura BM, Altura BJ: Interactions of locally produced humoral
 substances in regulation of the microcirculation. Mechanisms of Vasodilatation. Edited by Vanhoutte PM, Leusen I, Basel,
 Karger, 1978, pp 98–106
19. Price HL, Helrich M: The effect of cyclopropane, diethyl ether,
 nitrous oxide, thiopental, and hydrogen ion concentration on
 the myocardial function of the dog heart-lung preparation. J
20. Price ML: Myocardial depression by nitrous oxide and its reversal
 by Ca++. ANESTHESIOLOGY 44:211–215, 1976
22. Fukunaga AF, Epstein RM: Sympathetic excitation during ni-
 trous oxide-halothane anesthesia in the cat. ANESTHESIOLOGY
 39:23–36, 1973
23. Lowe RF, Gilboa DD: Demonstration of alpha and beta adren-
 ergic receptors in canine cerebral vasculature. Stroke 2:193–
 200, 1971
24. Lowe RF, Gilboa DD: Canine cerebrovascular response to nitro-
 glycerin, acetylcholine, 5-hydroxytryptamine and angiotensin.
25. Saffitz MS, Costello DJ, Gilboa DD: Nonlinear regression analysis
 of norepinephrine response kinetics in cerebral vasculature.
 J Pharmacol Exp Ther 211:13–19, 1979
 and barbiturate anesthesia on brain metabolism and pH in the
27. Severinghaus JW: International symposium on "CSF and CBF."
 ANESTHESIOLOGY 29:1222–1234, 1968
28. Longnecker DE, Harris PD: Microcirculatory actions of general
30. Longnecker DE: Circulatory and microvascular responses to nit-
32. Winters WD: EEG aspects of anesthetic states in animals. Part C,
 Volume VII. Handbook of Electroencephalography and Clinical
 Neuropsychology. Edited by Remond A, Longo VG. Am-
 sterdam, Elsevier, 1977, pp 88–96
 Am J Physiol 244:588–595, 1983
 penose cycle to the metabolism of glucose in the isolated,
35. Watabe SS, Otsuji S, Mitsunobu K, et al: [U-14C]-glucose me-
 tabolism of the perfused cat brain with blood flow distur-