B. Raymond Fink, M.D.
Professor
Department of Anesthesiology, RN-10
University of Washington School of Medicine
Seattle, Washington 98195

Reference

(Accepted for publication May 19, 1982)

Anesthesiology
57:427, 1982

Epidural Morphine in a Terminally Ill Patient

To the Editor:—We read with interest the report by Woods and Cohen1 on the use of high-dose epidural morphine in a terminally ill patient. In the summer of 1981, we provided long-term epidural morphine analgesia for a patient with intense rectal pain. He was a 63-year-old man who in 1970 had undergone a low anterior resection for adenocarcinoma of the rectosigmoid colon. Local recurrence had been treated with irradiation. However, extension into the sacrum caused intense rectal pain which was inadequately relieved by systemic narcotics. The patient disliked the somnolence and sedation caused by the narcotics. He was not expected to live for more than three or four months. Since we were using epidural morphine for analgesia in surgical patients, we were asked to help in the care of this patient.

Morphine, 5 mg in 10 ml preservative-free saline (supplied by A. H. Robins Company, Richmond, Virginia), injected through a percutaneous Portex epidural catheter, provided complete analgesia for more than 24 h without any systemic side effects. We injected the morphine while he was in the hospital and showed his wife how to do the same when he was home. Over the next two weeks, the frequency of injections increased from once, then twice, and finally three times a day. We had heard from Eltherington at the Annual Scientific Meeting of the California Society of Anesthesiologists in June 1981, that this tachyphylaxis could be reversed by an epidural injection of 10 ml 1% lidocaine.2 We were pleasantly surprised to find that we could achieve this in our patient, and did so again four more times over the next two months. We also had to replace the epidural catheter on about six occasions because of leaks that developed in the catheter. Epidural morphine analgesia was provided from June 30 to September 10, 1981. An alcohol block of sacral nerves 2, 3, and 4 was then performed as it appeared he was going to live longer than we originally thought. He died October 9, 1981. An autopsy was not performed.

We agree with Woods and Cohen that long-term epidural morphine facilitates the care of terminally ill patients who are in pain. We were pleased that we were able to restore analgesic efficacy with 1% lidocaine injected epidurally whenever tachyphylaxis occurred.

D. Dickerson McCoy, M.D.
Anesthesiologist
Malcolm G. Miller, M.B., Ch.B.
Anesthesiologist
Saint Joseph Hospital
1100 West Stewart Drive
Orange, California 92667

References
(Accepted for publication May 10, 1982)

Anesthesiology
57:427–428, 1982

Collapse after Epidural Injection Following Inadvertent Dural Perforation

To the Editor:—The interesting report by Dr. Hodgkinson1 concerning the course of epidural block following dural puncture is of great interest to all obstetric anesthesiologists. Three of his patients developed apparent total spinal anesthesia, and another three showed a high level of sensory loss, presumably associated with massive epidural block.

Our practice following inadvertent dural puncture
In conclusion, we would join Dr. Hodgkinson in recommending great caution when proceeding to epidural injection following dural puncture as it appears that one or more of three major complications may occur: total spinal, massive subdural, or massive epidural block, with onset times ranging from a few seconds to forty minutes post-block.

CLIVE COLLIER, M.R.C.P., FFARCS FFARCS
Director of Anaesthetics,
Women's Hospital (Crown Street)
Surry Hills
N.S.W. 2010
Australia

REFERENCES
(Accepted for publication May 13, 1982.)

Additional Causes of Postoperative Respiratory Complications in Premature Infants

To the Editor.—The complications Dr. Steward found while anesthetizing premature infants are similar to our experience. Several mechanisms were proposed for postoperative apnea and we would add two more:

(1) Fatigue resulting from spontaneous ventilation. Most of the infants were permitted to breathe spontaneously during anesthesia. Regardless of the breathing circuit, endotracheal intubation or the presence of a mask on the face, work of breathing increases during anesthesia.2 Certain breathing devices, such as inappropriately small endotracheal tubes or sticky valves, may exacerbate this increase in work of breathing. Because fatigue may be increased by spontaneous ventilation, perhaps this factor may contribute to these respiratory complications.

(2) Postoperative hypoxemia. Induction of anesthesia is associated with a decrease in FRC and an increase in ventilation-perfusion mismatch.3 Infants anesthetized with halothane have low tidal volumes and may have airway closure at end expiration.4 The usual mechanisms by which infants maintain FRC (e.g., sighing, expiration against a closed glottis) do not occur during anesthesia. Thus, atelectasis and hypventilation may lead to hypoxemia in the postoperative period which may persist for an unknown time. The premature infant has an abnormal ventilatory response to hypoxia (i.e., a decrease rather than an increase in ventilation), which may explain the incidence of postoperative apnea.

In summary, we believe that spontaneous ventilation during anesthesia and hypoxemia during the postoperative period should be considered as two additional causes of respiratory complications in the premature infant.

DENNIS M. FISHER, M.D.
Assistant Professor of Anesthesia and Pediatrics

SCOTT ROBINSON, M.D.
Assistant Professor of Anesthesia

GEORGE A. GREGORY, M.D.
Professor of Anesthesia and Pediatrics

Department of Anesthesia
University of California
San Francisco, California 94143