Improved Draping for Pulmonary-Artery Catheterization

To the Editor—Because of the potentially disastrous complication of bacterial endocarditis,1 meticulous sterile technique is advocated when placing flow-directed pulmonary artery catheters. Many anesthesiologists favor the right internal jugular vein as the insertion site.2 However, the neck is a difficult area to drape steriley. Towels or paper drapes tend to slip on the vertical surface; the patient's hair can creep into the prepared field; and an awake patient may become more apprehensive with opaque towels over his face.

We have found that an effective and convenient solution to these problems is to use a commonly available plastic drape* originally intended for eye surgery. It measures 80 × 130 cm overall, and has an eccentrically placed oblong hole measuring 7.6 cm in length. A band of adhesive around the hole makes a tight seal on the patient's neck and allows sufficient working area to catheterize either the internal or external jugular vein.

We believe that this drape makes a significant improvement in sterile technique, and we have found that the translucent plastic material makes awake patients less apprehensive than do opaque towels. The drape is easily torn or cut for removal following catheter placement.

We have used this drape with a hospital-assembled catheterization tray for over two hundred insertions with good results, and we suggest that the manufacturers of prepared pulmonary artery catheterization trays consider including this or a similar drape with their product.

G. C. LEDRAY, B.S.
Anesthesia Technician

G. BASHEIN, M.D., PH.D.
Assistant Professor

Department of Anesthesiology, RN-10
University of Washington
Seattle, Washington 98195

REFERENCES

2. Kaplan JA: Hemodynamic monitoring, Cardiac Anesthesia. Edited by Kaplan JA. New York, Grune and Stratton, 1979, p 89

* 3M Company Steri-Drape®, Catalog No. 1030; cost approximately $3.90.

An Erroneous CVP with the Triple-lumen Catheter in a Short Patient

To the Editor—Recently encountered great deviations in the central venous pressure (CVP) as measured through the proximal lumen of the Swan-Ganz (S-G) catheter in a patient undergoing myocardial revascularization without concomitant changes in other hemodynamic parameters. These were reproduced by accelerating the infusion to the side port. The cause was obvious: the S-G catheter had been advanced only 40 cm distally through the hemostatic valve of the sheath introducer in the right internal jugular vein (IJV) to achieve wedging in the pulmonary artery. Since the standard sheath introducer (Cordis®, Cordis Corporation, Miami, Florida) has a length of 12 cm, the proximal lumen of the S-G catheter was located within the introducer sheath. The infusion pressure was thus partly transmitted to the strain gauge measuring the proximal pressure.

In a patient of short stature, reproducible wedging of a pulmonary artery catheter is often achieved when advanced less than 42 cm from the cannulation site of the IJV. If a sheath introducer with a length of 12 cm or longer is used, the CVP values should be viewed with caution if the side port is simultaneously used for infusion.

MARKKU SALMENPERÄ, M.D.,
Department of Anaesthesia
Helsinki University Central Hospital
Haartmaninkatu 4
SF-00290 Helsinki 29
Finland

(Accepted for publication May 10, 1982.)