special attention. Whether equally high correlations would occur with children and adolescents remains an object of investigation.

ALLAN BURSTEIN, M.D.
CYNTHIA VANGA R.N.
Wenrock Professional Mall
505 Stillwell Corner Road
Freehold, New Jersey 07728

References

(Accepted for publication November 2, 1982.)

Disconnect Alarm Failure

To the Editor:—In light of the frequency and potential morbidity associated with anesthesia breathing circuit disconnection1 and pursuant recommendations that anesthesia ventilators be used in conjunction with patient disconnect alarms,2 I wish to report a case of alarm failure following disconnection between the endotracheal tube adapter and the tube itself.

During the conclusion of coronary artery bypass surgery, with ongoing ventilation utilizing a North American Drager ventilator equipped with a Drager DPM (disconnect pressure monitor) set at 5 cmH2O threshold, the breathing circuit (with a 8-mm endotracheal tube adapter attached) became dislodged from the endotracheal tube. The disconnection was subsequently discovered and the circuit reconnected prior to alarm from the oxygen analyzer, but I was curious as to the reason for failure of the disconnect monitor to alarm.

Subsequent trial with endotracheal tube adapters up to size 9-mm revealed adequate resistance to flow from the adapter alone to attain the selected 5 cm H2O pressure threshold and prevent the monitor from alarming. Disconnect alarm failure of this type is similar to that reported by McEwen et al.5 wherein partial “Y” connector occlusion by the patient’s pillow occurred, but disconnection and failure of the type described above, by its nature, would seem more likely to recur.

The manufacturer is apparently aware of this shortcoming, and has modified the DPM now available to provide a 7.5 cmH2O minimum pressure threshold. This correspondence is intended to alert those still using the earlier model DPM to be aware of this possible failure.

ALAN C. REYNOLDS, M.D.
Assistant Professor
Department of Anesthesiology
Medical College of Wisconsin
8700 West Wisconsin Avenue
Milwaukee, Wisconsin 53226

References

(Accepted for publication November 2, 1982.)

Glycine and the Blood-Brain Barrier

To the Editor:—The observations by Ovassapian et al. on possible glycine-induced visual disturbances during transurethral resection of the prostate are interesting. However, I disagree with their statement that glycine "readily passes the blood-brain barrier." There are good reasons for the central nervous system to shield itself from intravascular fluctuations in glycine concentration. This is discussed in reference number 8 of their article.2 An active transport system keeps the glycine CSF/blood concentration ratio at 0.05, one of the lowest such ratios of all the amino acids.3 Nevertheless, the observations of Ovassapian et al. are valuable and re-