on postoperative sore throat. ANESTHESIOLOGY 58:376–379, 1983
2. Loeser EA, Stanley TH, Jordan W, Machin R: Postoperative sore
throat; influence of tracheal tube lubrication versus cuff design.
3. Loeser EA, Bennett GM, Orr DL, Stanley TH: Reduction of
postoperative sore throat with new endotracheal tube cuffs.
ANESTHESIOLOGY 52:257–259, 1980
5. Stenquist O, Nilsson K: Postoperative sore throat related to tracheal

102–105, 1941
7. Menias OM: Sore throat postoperatively from topical anesthesia.
ANESTHESIOLOGY 46:438, 1977
8. Loeser EA, Kaminsky A, Díaz A, Stanley TH, Pace NL: The
influence of endotracheal tube cuff design and cuff lubrication
on postoperative sore throat. ANESTHESIOLOGY 58:376–379, 1983
9. Delinger JK, Ellison N, Kaminsky A: Effects of intratracheal li-
docaine on circulatory responses to tracheal intubation. ANES-
THESIOLOGY 41:409–412, 1974

(Accepted for publication May 9, 1983.)

Anesthesiology
59:594, 1983

Preferred Treatment of Fentanyl-induced Postoperative Rigidity

To the Editor:—Dr. Christian and co-workers appropriately identified the problem of postoperative rigidity after fentanyl anesthesia.1 This occurrence, as well as that of biphasic respiratory depression, is an important aspect to be aware of in regard to the usage of high-dose fentanyl. All of the author’s patients had significant chest wall rigidity develop 5–7 hours after the induction of anesthesia with fentanyl. The last sentence of the article indicated that the rigidity may be attenuated by naloxone or neuromuscular blocking agents. In the period following high-
dose fentanyl anesthesia (usually used in patients for coronary bypass surgery or those with an unstable cardiovascular system), a sudden antagonism of the narcotic effect may lead to undesirable changes in cardiovascular hemodynamics secondary to sudden increases in catecholamine activity. Naloxone does have significant CNS impact as evidenced by elevated concentrations of dopamine in brain tissue within minutes of naloxone-pre-
cipitated withdrawal in morphine-dependent mice and rats.2–3 Furthermore, several authors have noted adverse clinical hemodynamic effects with even low doses of naloxone given to reverse narcotic anesthesia in both humans and dogs.4–6 These studies demonstrate a significant increase in heart rate, cardiac index, blood pressure, left ventricular stroke work, and myocardial oxygen consumption (60–70% increase from prenaloxone values). Therefore, we strongly advocate the use of neuromuscular blockers to treat this problem rather than naloxone. Specifically, we recommend metacurine because it produces minimal histamine release and clinically insignificant changes in hemodynamic parameters.

MARK A. WANGLER, M.D.
Resident in Anesthesiology
BHAGWANDAS GUPTA, M.D.
Assistant Professor in Anesthesiology
Department of Anesthesiology
Ohio State University
410 West Tenth Avenue
Columbus, Ohio 43210

REFERENCES
1. Christian CM II, Waller JL, Moldenhaver CC: Postoperative ri-
gidity following fentanyl anesthesia. ANESTHESIOLOGY 58:275–277, 1983
2. Desai S, Ho IK: Effects of acute and continuous morphine
administration on catecholamine-sensitive adenosine triphos-
3. Iwamoto ET, Ho IK, Way L: Elevation of brain dopamine during
naloxone-precipitated withdrawal in morphine-dependent mice
4. Desmons JM, Bohm G, Goudere E: Hemodynamic responses to
low doses of naloxone after narcotic-nitrous oxide anesthesia.
ANESTHESIOLOGY 49:12–16, 1978
5. Petsche D, Eberlein HJ, Hess W, Tarnow J, Zimmerman G:
Antagonism of morphine with naloxone in dogs: cardiovascular
6. Freye E: Cardiovascular effects of high dosages of fentanyl, me-

(Accepted for publication May 9, 1983.)