Unusual Cause of Hypotension after Coronary Artery Bypass Grafting: Idiopathic Hypertrophic Subaortic Stenosis

JAMES PEARSON, M.D.,* AND J. G. REVES, M.D.†

Hypotension, decreased cardiac output, and elevated left atrial pressure after discontinuation of extracorporeal circulation for coronary artery bypass grafting (CABG) are usually signs of cardiac failure, which requires treatment with drugs and/or intraaortic counterpulsation balloon. We recently encountered a case of persistent hypotension worsened by iv catecholamine therapy. A myomectomy was performed to correct hypertrophic subaortic stenosis. The patient then was weaned successfully from cardiopulmonary bypass (CPB).

REPORT OF A CASE

A 59-year-old 90-kg man, ASA physical status III, was scheduled for elective coronary artery saphenous vein bypass grafting. NYHA class II symptoms of ischemic heart disease and a recent subendocardial myocardial infarction prompted a cardiac catheterization, which revealed three- vessel coronary artery disease (left anterior descending 90%, circumflex 90%, and right coronary artery 50%). The left ventricular end-diastolic pressure was 8 mmHg preangiographic and postangiographic dye injection. The systolic left ventricular and aortic pressures were 170 mmHg. The ventricle was "hyperdynamic," with an ejection fraction of 50%. The mitral valve was normal.

He had a long history of hypertension and hyperuricemia. His physical examination included an enlarged left ventricle and a grade 2/6 systolic ejection murmur, loudest at the second right intercostal space, that radiated to the carotid arteries, bilaterally. The murmur was considered innocent, and the left ventricular hypertrophy secondary to hypertension. Current medications were nitroglycerin 1/150 pm, cutaneous nitroglycerin, hydrochlorothiazide, probenecid, and KCl. ECG showed borderline left ventricular hypertrophy with anterior lateral ST-T-wave changes consistent with myocardial ischemia. The chest roentgenogram was normal.

About 90 minutes after the administration of diazepam 15 mg po, morphine sulfate 10 mg im, and scopolamine 0.3 mg im, anesthesia was induced with diazepam 0.4 mg/kg iv, lidocaine hydrochloride 1 mg/kg iv, and pancuronium bromide 0.1 mg/kg iv. Nitrous oxide and oxygen were administered via mask before the trachea was intubated. Anesthesia was maintained with fentanyl 20 mcg/kg iv and inhalation of 50% N2O and enflurane, 0.7% inspired concentration. Heart rate and rhythm were monitored from V5 or lead II of the ECG. The left radial and right atrial pressures were monitored continuously before CPB. Also, a 2 F thermistor-tipped catheter was inserted into the pulmonary artery via the right ventricle before CPB for determination of cardiac output using the thermodilution technique.

An initial cardiac index measured in duplicate was 2.8 l/min/m². CPB was established, the proximal vein graft anastomoses were made, and the patient was cooled to 28°C. The aorta was cross-clamped and myocardial protection accomplished with potassium cold cardioplegia via the aortic root. There was no unusual amount of regurgitation of cardioplegic solution through the aortic valve during cardioplegia infusion. Seventy-four minutes were required for seven distal vein to coronary artery anastomoses. Total body rewarming was begun during the last distal anastomosis, and once complete, the aortic cross-clamp was removed.

Attempts at weaning the patient from CPB were unsuccessful. Pharmacologic support consisted of nitroglycerin 0.3 mcg·kg⁻¹·min⁻¹ iv and dopamine 10 mcg·kg⁻¹·min⁻¹ iv. Despite this therapy, the mean LAP remained elevated (28 mmHg), and systemic pressure and cardiac output were low, as attempts were made to terminate CPB. Central arterial aortic pressure (100 mmHg) was measured and equaled the radial artery pressure, but a needle placed in the left ventricle revealed a maximum systolic pressure of 180 mmHg (fig. 1A). Premature ventricular contractions were produced by manual stimulation of the heart surface, which showed a postextrastolic decrease in radial arterial pressure, instead of the usual increase in arterial blood pressure (positive Brockenbrough's sign—fig. 2). A presumptive diagnosis of left ventricular outflow obstruction was made possibly secondary to septal hypertrophy. Vasodilators and catecholamine infusions were discontinued, and CPB was reinitiated at a flow of 2.2 l/min·m⁻²·min⁻¹.

After aortotomy, inspection revealed that the aortic valve was normal; however, the septum was markedly hypertrophied and exhibited a small area of fibrosis. A part of the septum (1 x 1 x 5 cm) was excised to relieve the left ventricular outflow obstruction. Without
Fig. 1. Elevated left ventricular pressure (LVP) with concurrent low-normal systemic blood pressure (BP) seen in A is corrected after myectomy so that the LVP and BP are more nearly normal (B). See text for details.

Discussion

Patients with idiopathic hypertrophic subaortic stenosis (IHSS) have a ventricular septum that is disproportionately hypertrophied compared with the posterobasal left ventricular free wall. In patients with IHSS, obstruction of the ventricular outflow tract occurs when the free edge of the anterior mitral leaflet moves forward during mid-systole against the hypertrophied ventricular septum. Braunwald described the dynamic nature of the obstruction at catheterization by changing the gradient between left ventricle and aorta with several different interventions; for example, increased arterial pressure or reduced myocardial contractility reduces the outflow gradient. On the other hand, decreased arterial pressure, increased myocardial contractility, or decreased left ventricular volume augments the gradient. Our patient developed a large pressure gradient between the left ventricle and aorta during attempts to wean from CPB.

IHSS can be classified as nonobstructive, evocable, or obstructive. This diagnosis usually is made at catheterization. Almost all of the patients with obstructive disease are symptomatic and may have angina, dyspnea on exertion, presyncope or syncope, and may have symptoms that mimic coronary artery disease. The incidence of

Fig. 2. Brackenbrough's sign; direct aortic tracing showing no increase in blood pressure after a premature ventricular contraction. Usually, a premature ventricular contraction causes a compensatory pause and this time allows for increased ventricular filling and increased myocardial contractility by the Starling mechanism. However, if an obstruction to outflow exists, then the systemic pressures will not reflect this sudden improvement in myocardial performance. This is diagnostic of IHSS (1). (Arrows indicate premature ventricular contractions.)
IHSS in patients with CAD is unknown, but it is known that there is a 15–20% incidence of CAD in patients with IHSS.\(^6\)

In our case, the diagnosis of IHSS could have been made preoperatively by an echocardiogram and a more detailed physical examination (i.e., maneuvers to decrease ventricular afterload or preload, making the murmur louder); however, IHSS was not suspected until difficulty in weaning from CPB occurred. Undoubtedly, the increase in myocardial contractility, secondary to dopamine infusion, in addition to preload reduction with nitroglycerin, led to increased outflow obstruction, which led to decreased stroke volume. It is also possible that improved myocardial performance after revascularization may have led to the obstructive symptoms that had never been documented in this patient.

In summary, we present an unusual but important cause of cardiac failure during discontinuation of CPB. Coronary bypass graft patients may have an unrecognized obstruction of the ventricular outflow tract. Detection involves measurement of left ventricular to aortic gradient and treatment is surgical excision of the obstruction. The customary treatment of postbypass low cardiac output with vasodilators and inotropic agents worsens the condition and jeopardizes chances of a successful outcome.

REFERENCES

Anesthesiology
60:594–598, 1984

Propranolol Postoperative Maintenance by Continuous Intravenous Infusion

DANIEL VILLERS, M.D.,* MICHEL L. J. PINAUD, M.D.,† MICHEL BOURIN, M.D.,‡ BRIGITTE FRISON, M.D.,§ RÉMY J. SOURON, M.D.,‡ FRANÇOISE M. NICOLAS, M.D.,**

In patients with coronary artery disease receiving propranolol and undergoing surgery, propranolol can be given up to the morning of surgery without adverse hemodynamic effects.\(^1\)\(^\text{2}\)\(^\text{3}\) If propranolol administration is terminated postoperatively for more than 24 h, the withdrawal rebound syndrome may occur,\(^4\) consisting of tachycardia, hypertension, worsening angina pectoris, ventricular arrhythmias, myocardial infarction, and even sudden death.\(^5\) During abdominal surgery, postoperative maintenance of propranolol by an iv administration seems logical when patients cannot take the drug orally for at least 24 h.

Few reports on the iv administration of propranolol in patients with coronary artery disease undergoing abdominal surgery procedure are available.\(^6\) We describe below the clinical benefits and the hemodynamic effects of a continuous iv propranolol infusion maintaining postoperatively the plasma propranolol concentration within the 14 to 90 ng/ml range. According to Fine \textit{et al.}\(^7\) such a concentration range is associated with optimal relief of angina pectoris and with a 64–98% blockade of exercise-induced tachycardia.

\section*{Patients and Methods}

Seven patients (49–61 yr) scheduled for abdominal surgery and receiving propranolol therapy because of a documented history of angina pectoris (Grade III) gave informed consent to this study, which was approved by our medical staff (table 1). Preoperatively, propranolol therapy was well tolerated; no patient had clinical, radiologic, or ECG evidence of congestive failure or atrioventricular block. Blood urea and serum creatinine as well as liver function tests were all within normal levels.

The patients received their last oral dose of propranolol...