both arms after determining that blood pressure was similar in the arms measured by Dinamap®. Thirty patients were studied after carotid endarterectomy allowing comparison over a range of blood pressures much higher than in Nystrom’s study. Of 558 paired measurements, 340 concerned intraarterial systolic pressures greater than 160 mmHg (table 1). Although these data generally agree with Nystrom's in the normal range, a large discrepancy appears as systolic pressure increases. Were values in this range included in Nystrom's data, a lower correlation coefficient and regression coefficient between direct and indirect pressures would have been obtained. The practicing anesthesiologist should be aware that systolic pressure in the hypertensive range is significantly underestimated by the Dinamap®.

Paul G. Loubser, M.B., Ch.B.
Division of Cardiovascular Anesthesia
Texas Heart Institute
Houston, Texas 77225

REFERENCE
(Accepted for publication June 4, 1985.)

Translaryngeal Guided Intubation Using a Sheath Stylet

To the Editor:—Every anesthetist is aware of the consequences of acute airway obstruction and should be trained to cope with this problem when it arises. However, maintaining a patent airway is not always attainable, particularly when repeated attempts at endoscopic or blind intubation have failed and have left a bloody field, preventing optimal visualization. To deal with this challenging problem, we have developed a new technique of translaryngeal guided intubation (TLI) by using a guide wire and its plastic sheath protector.

Our modified method of TLI employs the use of a spring wire originally designed to be used as a guide wire for arterial cannulation (Argon® 395203, diameter 0.021 mm, length 80 cm). After puncturing the cricothyroid membrane with a 20 GA Angiocath®, the wire is passed cephalad into the oropharynx and out the mouth or into the nasopharynx and out one of the nostrils. Instead of placing an endotracheal tube directly over the guide wire, we use the plastic sheath protector (that came with the spring wire), which was previously cut to 70 cm and straightened for easy manipulation. After the plastic sheath passes into the larynx, the spring wire is withdrawn from above to permit the sheath to be inserted deeper and to prevent possible contamination of the superficial soft neck tissues. A well-lubricated endotracheal tube then is inserted to the desired distance using the plastic sheath as a stylet.

To date we have used this technique in six patients without failure. We believe because the sheath is small and firm, similar to an ordinary stylet that we use every day, and because the sheath is inserted over the wire it is much easier to manipulate. The only drawback of the sheath stylet is its acute curvature, which may need to be straightened before use and that sometimes require pre-warming. This problem could be easily resolved if a ready-made stylet sheath was made available. Because the spring wire used is designed for intravascular use, its floppy tip will not damage laryngeal or pharyngeal structures.

The technique is generally referred to as “retrograde intubation,” since the endotracheal tube is not inserted from below, although the guide wire is. We therefore have suggested that it would be more appropriate to call this technique “translaryngeal guided intubation.”

Hwa-Kou King, M.D.
Division of Anesthesiology
VA Medical Center, West Los Angeles
Los Angeles, California 90073
(Accepted for publication June 18, 1985.)

Intraoperative Coronary Spasm in a Young Woman

To the Editor:—Recently, I anesthetized a 20-yr-old woman for debridement of eschars. During the procedure, the debrided areas were covered with epinephrine-soaked sponges. A sinus tachycardia of approximately 140 beats/min ensued. I treated the tachycardia with two 0.5-mg doses of propranolol. A few minutes later, I noted an