CORRESPONDENCE

Anesthesiology
63:560, 1985

Heart Rate and Blood Pressure Response to Laryngoscopy:
The Influence of Laryngoscopic Technique

To the Editor:—Laryngoscopy and tracheal intubation are techniques that can result in significant hemodynamic changes and a high rate of dysrhythmias. We have examined the effect of laryngoscopic technique on blood pressure and heart rate response following direct laryngoscopy and endotracheal intubation. After receiving approval of the institutional review board and informed consent, 45 ASA physical status I patients ages 18–55 were randomly assigned to one of three groups: Group A—laryngoscopy performed with the Miller No. 2 blade with the tip placed in the vallecula; Group B—laryngoscopy performed with the Miller No. 2 blade used to lift the tip of the epiglottis; and Group C—laryngoscopy performed with the MacIntosh No. 3 blade placed in the vallecula. There were no differences in age, weight, height, and sex between groups. All patients received diazepam 0.125 mg/kg PO and glycopyrrolate 1.0 mg PO 1 h before induction and d-tubocurarine 3 mg, thiopental 4 mg/kg, and succinylcholine 2 mg/kg iv for the induction of anesthesia. Laryngoscopy was performed following the loss of the lid reflex and loss of the thenar eminence twitch as tested by stimulation of the ulnar nerve at the wrist. Tracheal intubation was performed 30 s later and the endotracheal tube cuff was inflated to 25 mmHg pressure. All laryngoscopies were performed by the same anesthesia resident in his third year of anesthesia training. The blood pressure and heart rate were measured preinduction, before laryngoscopy, following 30 s of direct laryngoscopy, and 30 s, 3.5 min, and 5 min after intubation. There were no differences when heart rate and blood pressure were compared between groups at a given time by a three-way analysis of variance. Sinus tachycardia was the only dysrhythmia we detected, and we failed to observe ST-segment changes on lead II electrocardiogram that might have suggested myocardial ischemia. The use of iv and intratracheal lidocaine, the administration of iv nitroprusside and fentanyl, and limitation of the duration of laryngoscopy appear more important than the choice of laryngoscope blade in blunting the pressor response to direct laryngoscopy.

Timothy J. Norris, M.D.
Major, MC
Resident in Anesthesiology

Curtis L. Baysinger, M.D.
Major, MC
Staff Anesthesiologist

Anesthesia and Operative Service
Brooke Army Medical Center
Fort Sam Houston, Texas 78234

(Accepted for publication June 4, 1985.)

Fine Tuning the Priming Principle

To the Editor:—Dr. Miller, in his thoughtful Editorial "The Priming Principle" suggests that the determination of the optimal time interval between the "priming" and "intubating" doses of nondepolarizing muscle relaxants (MR) and the range of these doses will require further investigation. I agree with Dr. Miller but would like to add that these parameters should be adapted to the requirements of the individual patient. It can be expected that, everything else being equal, increasing the size of the priming and intubating doses but leaving the time interval (6 min) between them unchanged will accelerate the development of neuromuscular (NM) block. Increasing the priming dose, however, also will increase the incidence and severity of discomfort for unanesthetized patients, and the larger the intubating dose, the longer the duration of its NM effect. Furthermore, with the exception of vecuronium, the likelihood of histamine release and the incidence and severity of circulatory side effects will also be greater with increasing doses.

Since the development of the maximal NM effect of marginally effective doses of nondepolarizing MR takes 6–8 min, decreasing the time interval between the administration of the priming and intubating doses to less than 6 min is unlikely to offer any advantages. Changing the size of priming and intubating doses, however, may be advantageous. If, for psychologic reasons, it is impor-