Tracheo-bronchial Angles in Infants and Children

YUKIO KUBOTA, M.D.,* YOSHIRO TOYODA, M.D.,† NOBORU NAGATA, M.D.,‡ HIROSHI KUBOTA, M.D.,§ SHIGEHIRO SAWADA, M.D.,§ MASAIRO MURAKAWA, M.D.,§ MITSUGU FUJIMORI, M.D.**

In 1954, Adriani and Griggs1 reported that both right and left main stem bronchi diverge from the trachea at angles of approximately 110° in children up to 3 yr of age (fig. 1A). In 1959, Smith2 quoted Adriani and Griggs and confirmed that both the right and left bronchi diverge from the trachea at equal angles of 55° for a total of 110° in children under the age of 3 yr (fig. 1B). Since then, these measurements have in general been accepted. Recently, Brown and Fish3 observed that the left bronchial angle is greater than the right in neonates.

If Adriani and Griggs' measurements are correct, both endotracheal tubes and straight suction catheters should enter the right and left main bronchi with comparable frequency. We have observed, however, that the endotracheal tube or the suction catheter more commonly enters the right main bronchus in infants and children, just as in the adult. We observed that bronchial sounds over the right lung field are louder than the left when respiration is assisted during tracheal intubation. In a study using a straight suction catheter, Bush4 observed a probable difference in the angles of the right and left bronchi. Placzek and Silverman5 also observed that the left main bronchus subtended a more acute angle with the trachea than did the right in a study of suction catheters.

Consequently, we have measured right and left bronchial angles in anesthetized infants and children by means of supine chest x-ray films and, simultaneously, defined the location of the tip of an orotracheal tube inserted beyond the carina.

MATERIALS AND METHODS

Three hundred and ninety infants and children of either sex between the ages of 1 month and 13 yr were studied.†† Age distribution is shown in tables 1 and 2. These patients had no history or radiologic evidence of lung, heart, or mediastinal disease. Chest x-ray films were taken with the subjects in the supine position. Measurement of the angles between the axis of the trachea and each main stem bronchus was obtained from the films. Right and left bronchial angles were calculated by drawing a line on the longitudinal axis of the supracarinal position of the trachea and measuring the angles formed by lines extended onto inferior straight margins of the right and left main bronchi (fig. 2). The subjects were divided into a nonanesthetized, nonintubation group (131) and an intubation group (259). In the latter, following induction of general anesthesia and oxygenation, tracheal intubation was accomplished followed by blind bronchial intubation using appropriate sizes of Portex® tubes, with or without a cuff. After the location of the tube had been verified as right or left by listening for presence of breath sounds, the tube was withdrawn into the trachea.

RESULTS

1. Nonintubation group: The right bronchial angle ranged from 27 ± 6° (SD) to 33 ± 3°, and the left angle ranged from 45 ± 5° to 49 ± 4°. The overall means of the right and left bronchial angles were 31 ± 5° and 46 ± 5°, respectively (table 1).

2. Intubation group: The right bronchial angle ranged from 30 ± 1° to 36 ± 5° and the left angle from 46 ± 7° to 53 ± 8°. The overall right and left means were 32 ± 5° and 51 ± 7°, respectively (table 2).

The overall means of the right and left bronchial angles in both groups were 31 ± 5° and 49 ± 7°, respectively (fig. 2). The angle of the tracheal bifurcation (A + B) totalled approximately 80°.

The endotracheal tube easily entered the right bronchus in all 259 cases.

†† Permission to perform this study was obtained from the parents of the children involved. We do not have a hospital human experimentation committee as in the United States. This work was done at Osaka Khoseinenkin Hospital.

* Chief, Department of Anesthesia, Osaka Khoseinenkin Hospital, and Lecturer, Kyoto University, Osaka City University, Osaka University, and Osaka Dental University.
† Associate Chief.
§ Staff.
‡ Assistant, Department of Anesthesia, Osaka City Perinatal Center, Osaka.
¶ Chief, Department of Anesthesia, Kyoto University, Kyoto.
** Professor and Chairman, Department of Anesthesiology, Osaka City University, Osaka, Japan.

Received from the Department of Anesthesia, Osaka Khoseinenkin Hospital, Osaka, Japan. Accepted for publication October 7, 1985. Read before the 51st Annual Meeting of the Japan Society of Anesthesiology, April 5, 1984, Fukuoka, Japan.

Address reprint requests to Dr. Kubota: 4-2-78, Fukushima, Fukushima-Ku, Osaka 553, Osaka Khoseinenkin Hospital, Osaka 553, Japan.

Key words: Anesthesia: pediatric. Lungs: bronchus; trachea.
DISCUSSION

In reviewing the literature on bronchial angles obtained at autopsy prior to 1937, Miller cited Kobler and Von Hovarka's work (1893) stating that the angle of divergence of the bronchi averaged about 70°. Novack noted that in the newborn infant, the right bronchial angle ranged from 10° to 30° with the left angle greater, ranging from 38° to 45°.

In 1968, Meschan reported on a radiographic study in neonates that showed the right bronchial angle with the long axis of the trachea ranged from 10° to 35°, and the left bronchial angle with the long axis of the trachea ranged from 30° to 65°. In 1970, Alavi et al. reported that in living children, the angle of the tracheal bifurcation ranged from 52° to 78°. In 1979, Brown and Fish reported that the right bronchial angle averaged 30° and the left 47° in a series of 40 neonates, thus, similar to the angle in adults. Little difference exists between the measurements of Brown and Fish and those of our present study. Brown and Fish also observed that the right main bronchus was usually intubated because of more direct continuity with the trachea and because the bevel of the

<p>| Table 2. Right and Left Bronchial Angles (means ± SD) of Infants and Children (intubated group, n = 259) |
|---------------------------------|-----------------|------------------|------------------|</p>
<table>
<thead>
<tr>
<th>Age (yr.)</th>
<th>Cases (no.)</th>
<th>Right Bronchial Angle (degrees)</th>
<th>Left Bronchial Angle (degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–1</td>
<td>29</td>
<td>30 ± 5</td>
<td>51 ± 9</td>
</tr>
<tr>
<td>1–2</td>
<td>19</td>
<td>35 ± 6</td>
<td>53 ± 8</td>
</tr>
<tr>
<td>2–3</td>
<td>22</td>
<td>31 ± 6</td>
<td>51 ± 8</td>
</tr>
<tr>
<td>3–4</td>
<td>15</td>
<td>33 ± 3</td>
<td>53 ± 6</td>
</tr>
<tr>
<td>4–5</td>
<td>33</td>
<td>31 ± 3</td>
<td>49 ± 7</td>
</tr>
<tr>
<td>5–6</td>
<td>35</td>
<td>31 ± 5</td>
<td>49 ± 6</td>
</tr>
<tr>
<td>6–7</td>
<td>34</td>
<td>30 ± 5</td>
<td>48 ± 7</td>
</tr>
<tr>
<td>7–8</td>
<td>25</td>
<td>35 ± 4</td>
<td>49 ± 9</td>
</tr>
<tr>
<td>8–9</td>
<td>25</td>
<td>31 ± 4</td>
<td>51 ± 6</td>
</tr>
<tr>
<td>9–10</td>
<td>6</td>
<td>31 ± 4</td>
<td>48 ± 2</td>
</tr>
<tr>
<td>10–11</td>
<td>6</td>
<td>35 ± 6</td>
<td>46 ± 7</td>
</tr>
<tr>
<td>11–12</td>
<td>5</td>
<td>36 ± 5</td>
<td>50 ± 3</td>
</tr>
<tr>
<td>12–13</td>
<td>5</td>
<td>30 ± 1</td>
<td>52 ± 9</td>
</tr>
<tr>
<td>Overall mean</td>
<td>259</td>
<td>32 ± 5</td>
<td>51 ± 7</td>
</tr>
</tbody>
</table>

Table 1. Right and Left Bronchial Angles (means ± SD) of Infants and Children (nonintubated group, n = 181)

<table>
<thead>
<tr>
<th>Age (yr.)</th>
<th>Cases (no.)</th>
<th>Right Bronchial Angle (degrees)</th>
<th>Left Bronchial Angle (degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–1</td>
<td>68</td>
<td>27 ± 6</td>
<td>45 ± 5</td>
</tr>
<tr>
<td>1–2</td>
<td>19</td>
<td>32 ± 5</td>
<td>46 ± 6</td>
</tr>
<tr>
<td>2–3</td>
<td>22</td>
<td>31 ± 6</td>
<td>48 ± 5</td>
</tr>
<tr>
<td>3–4</td>
<td>16</td>
<td>33 ± 3</td>
<td>46 ± 5</td>
</tr>
<tr>
<td>4–5</td>
<td>6</td>
<td>31 ± 4</td>
<td>49 ± 4</td>
</tr>
<tr>
<td>Overall mean</td>
<td>131</td>
<td>31 ± 5</td>
<td>46 ± 5</td>
</tr>
</tbody>
</table>
endotracheal tube usually lies to the right on insertion. Cleveland10 stated that the mean of the right bronchial angle was 26.42° and the mean of the left bronchial angle was 33.02° from birth to 18 yr of age.

In these reports, the angles of tracheal bifurcation were far less than those reported by Adriani and Griggs.1 Moreover, left bronchial angles were greater than the right in four of the six reports. The measurements reported here are in general conformity with these findings. In addition, an orotracheal tube advanced beyond the carina entered the right bronchus in all cases.

The discrepancy between these findings and those of Adriani and Griggs cannot be resolved readily. As an in-

crease in the angle of tracheal bifurcation is frequently mentioned as a sign of pathologic changes in lung, heart, or mediastinum, perhaps Adriani and Griggs' infants and children had cardiopulmonary disease.

These accumulated findings suggest the following clinical applications: 1) the normal variation in the angulation subtended by bronchi at the carina serves as a norm against which radiologists may detect displacement of the main bronchi owing to the presence of cardiopulmonary disease, and 2) in as much as the angle subtended by the right main bronchus strongly favors inadvertent intuba-

tion of that bronchus in infants as well as in adults, this needs to be appreciated by anesthesiologists, neonatologists, and other health-care professionals who care for infants who require tracheal intubation.

The authors gratefully acknowledge the review of this paper made by Leroy D. Vandam, M.D. Professor of Anaesthesia, Emeritus, Harvard Medical School.

REFERENCES