To the Editor:—With great interest, we read the article by Libonati et al., "The Use of Succinylcholine in Open Eye Surgery." It is an informative report of a great number of cases. However, the conclusions deserve some comment:

1. There can be no doubt that succinylcholine increases intraocular pressure (IOP), even under deep anesthesia (fig. 1).
2. This increase cannot be prevented completely by any of the many methods suggested in the literature.2-4
3. The fact that there are no case reports on loss of vitrous following administration of succinylcholine in a "preblocked" patient has been described before.5
4. The authors have described 63 cases of open eye injury that had been pretreated with a nondepolarizing neuromuscular blocking drug and intubated with succinylcholine. According to the formula of Hanley et al., this does not ensure absolute safety but rather reduces the risk to around 5% (with 95% confidence). The conclusion should be, therefore, that there were no inadvertent results observed in 63 patients, leaving it up to the reader to decide whether this is acceptable or not.

5. Even if there were indeed no loss of vitrous in the 63 cases, the question remains whether the mechanisms initiated by succinylcholine on the eye, which Cook has described as "detrimental," are desirable or rather to be avoided.

A more general question in this context is how we should deal with scientifically substantiated findings of anesthesiologic research. The majority of the anesthetic community, for example, prefers not to use ketamine in patients with coronary heart disease. This preference is not based on any documentation that ketamine causes myocardial infarction but only on the rationale that ketamine will increase all parameters of myocardial oxygen consumption. If we believe in anesthetic intelligence, this attitude will not be altered by any reports on a successful ketamine anesthesia for coronary surgery.7,8

We certainly agree with Libonati et al. that "succinylcholine and rapid induction" is an entirely different subject than "succinylcholine and IOP," and that this issue is yet far from closed. With respect to the "modern nondepolarizing neuromuscular blocking drugs," atracurium was mentioned as having IOP-lowering properties. The reference quoted for that statement was describing the IOP effects of alcuronium9 rather than those of atracurium. The latter, in contrast, was found not to alter IOP.10

If neuromuscular blockade is required for ophthalmic surgery, we suggest the use of vecuronium, which offers cardiovascular stability and—in most patients—probably reduces IOP.11

JAN-PETER A. H. JANITZEN, M.D., D.E.A.A.
GILLIAN H. HACKETT, M.B., F.F.A.R.C.S.
GREGORY EARNSHAW, M.B., F.F.A.R.C.S.
Department of Anesthesiology
University of Texas
Southwestern Medical School
Dallas, Texas

REFERENCES
CORRESPONDENCE


(Accepted for publication October 10, 1985.)

In reply:—We appreciate the interest Dr. Jantzen and his colleagues have shown in our report and in the relation between neuromuscular blocking agents and intraocular pressure (IOP) changes. Unfortunately, they seem to have missed our main point, which is that succinylcholine should not be avoided in open eye injuries solely because of the possibility of a mild elevation in IOP when more vital factors must be considered. For example, a full stomach may dictate the need for rapid intubation to prevent aspiration. Coughing or staining must be avoided during intubation to prevent an even greater rise in IOP than that produced by succinylcholine.

As Dr. Jantzen points out, succinylcholine raises the IOP in the intact eye. However, there is doubt that it increases pressure under deep anesthesia. His references are Murphy, who nowhere in his article makes this statement, and fig 1, which is apparently a single experiment in a dog under fentanyl anesthesia. If Dr. Jantzen intends to cite Cook's work as the basis for this statement, those patients were given less than 1 MAC halothane, hardly deep anesthesia. Furthermore, it has not been proved, and we think it doubtful, that the same mechanisms operate in the injured eye. We thank Dr. Jantzen for calling attention to our error in citation about acuronium in place of atracurium.

Finally, we concur with the conclusion of the recent review article cited by Dr. Jantzen, “There is, as yet, no ultrarapidly acting nondepolarizing neuromuscular blocking agent to allow succinylcholine to be abandoned completely and no method of succinylcholine pretreatment is completely effective. For such surgery the anesthesiologist must balance the overall risk to the patient with the risk to the injured eye, in deciding if succinylcholine is to be used.”

MARGARET M. LIBONATI, M.D.
Assistant Director
Department of Anesthesia
Wills Eye Hospital
Clinical Affiliate
Children's Hospital of Philadelphia

JOHN J. LEAHY, M.D.
Director
Department of Anesthesia
Wills Eye Hospital
Associate Professor of Anesthesia
Thomas Jefferson University

NORIC ELLISON, M.D.
Professor of Anesthesia
University of Pennsylvania
School of Medicine
Philadelphia, PA 19107

REFERENCE

(Accepted for publication October 10, 1985.)

Anesthesiology
64:525–526, 1986

Succinylcholine and Open Eye Injury. II.

To The Editor:—I wish to commend Libonati et al.1 for their recent clinical report documenting the safe use of succinylcholine in open eye surgery. My experience here at the Massachusetts Eye and Ear Infirmary is similar to the data presented for the Wills Eye Hospital.

Pretreatment with a nondepolarizing muscle relaxant, use of intravenous lidocaine, and assurance of adequate depth of anesthesia prior to intubation have allowed the use of succinylcholine for full-stomach–open-eye situations without causing further eye damage. The Massachusetts Eye and Ear Infirmary treats several hundred open eye injuries each year, and the majority are intubated as de-