either anesthesiologists, administrators, or health care systems planners. Some compelling action on this matter is due. Although these differences are important in the developed countries, they are crucial for the developing consumers.

J. ANTONIO ALDRETE, M.D., M.S.
PETER L. HENDRICKS, M.D.
Department of Anesthesiology
University of Alabama at Birmingham
University Station
Birmingham, Alabama 35294

REFERENCES


Anesthesia
64:657–658, 1986

CORRESPONDENCE


(Accepted for publication November 23, 1983.)

In Defense of Trimethaphan for Use in Preeclampsia

To the Editor—Hood et al.1 make an excellent case for the use of nitroglycerin (NTG) to attenuate the cardiovascular responses to tracheal intubation in severely preeclamptic patients. They may, however, underestimate the usefulness of trimethaphan (TMP) in this setting. Severely preeclamptic patients may develop hypertensive encephalopathy and hemorrhage or cerebral edema.2 Cottrell et al.3 showed that intracranial pressure doubled and cerebral perfusion pressure fell 58% when NTG lowered the mean arterial pressure from 104 to 69 mmHg. Cerebral blood flow and intracranial pressure do not change during moderate TMP-induced hypotension.4 In addition, TMP produces minimal blood–brain barrier dysfunction.5 Undesirable side effects of TMP listed by Hood et al. include histamine release, decreased cardiac output, and prolonged paralysis after succinylcholine administration. Fahmy and Soter6 conclude that “histamine release by trimethaphan does not play an important role in the hemodynamic effects of the drug in humans.”67 They noted no decrease in cardiac output with TMP.

Poulton and James7 reported 6 h of apnea following TMP and succinylcholine; however, they had used an enormous dose of TMP (1,700 mg). Sklar and Lanks8 found that usual clinical doses of TMP should double the duration of action of succinylcholine. This should not present clinical problems during anesthesia for cesarean section.

In short, TMP can be a useful agent for acute blood pressure control in severely preeclamptic patients during induction and emergence from general anesthesia. The potential intracranial complications of NTG-induced hypotension are avoided.

MITCHEL SOSIS, M.D., PH.D.
Assistant Professor of Anesthesiology
BARBARA LEIGHTON, M.D.
Instructor in Anesthesiology
Jefferson Medical College
Thomas Jefferson University
Philadelphia, Pennsylvania 19107

REFERENCES


4. Larsen R, Drobrick L, Teichmann J, Radke J, Kettler D: Die auswirkungen einer kontrollierten hypotension mit nitroprusid-

Downloaded From: http://anesthesiology.pubs.asahq.org/pdfaccess.ashx?url=/data/journals/jasa/931399/ on 06/23/2017

(Received for publication November 25, 1985.)

Anesthesiology
64:658, 1986

Do Not Use the “Innovated” Cylinder Valve Handle for Cracking the Valve

To the Editor:—It is standard practice to clear particles of dust from a compressed gas cylinder just before fitting the cylinder to an anesthesia machine by slightly opening

and closing the valve (“cracking the valve”). This maneuver will prevent the dust from being blown into the anesthesia machine where it could clog filters or interfere with internal working.1

With the use of a traditional cylinder valve handle, cracking the valve can be done easily. However, performing this maneuver on a nitrous oxide cylinder using the innovated (improved) cylinder valve handle (Ohmeda® cylinder wrench 0219-5415-800, fig. 1) supplied with Ohmeda Modulus™ II anesthesia machine resulted in a complication to the anesthetist. This valve handle turns only counterclockwise when used for opening the valve, and once open, it is impossible to close the valve unless the handle is reapplied upside-down and turned clockwise.

When the anesthetist unfamiliar with this “tricky” handle tried to crack the valve of the nitrous oxide cylinder, he succeeded in opening the valve but he could not shut off the jet stream of nitrous oxide coming from the cylinder until he reversed the handle. In his panic, he had a direct blast of freezing nitrous oxide to his palm which resulted in frost-bite on the palm (fig. 2).

MASAO YAMASHITA, M.D.
Anesthetist-in-Chief

KYOKO MOTORAWA, M.D.
Chief Resident in Anesthesia
Ibaraki Children’s Hospital
Mito 311-41, Japan

SEIJI WATANABE, M.D.
Anesthetist-in-Chief
Mito Saisei-kai Hospital
Mito 311-41, Japan

REFERENCE

(Received for publication November 25, 1985.)

FIG. 1. The cylinder valve handle that turns only counterclockwise when applied for opening the valve (Ohmeda® cylinder wrench 0219-5415-800).

FIG. 2. A large blister in the palm due to an accidental exposure to freezing nitrous oxide gas.