CORRESPONDENCE

Anesthesiology
65:135, 1986

In reply.—The advocates of Computer Generated Anesthesia Records (CGARs) seem to regard the record simply as a means of data presentation, and if that is as far as the discussion goes, they would seem to be correct. However, CGAR advocates also forget that, particularly in ASA Status I and II patients, where the majority of our malpractice cost lies, major periods of inactivity occur, and vigilance aids are necessary. Charting serves this purpose well, and those who ignore it do so at their own (and their patients') peril. This does not mean that I need literally to enter every piece of data by hand, as may have been implied in my letter. It is my intention that every piece of data pertinent to patient well being should be reviewed prior to being placed in the archive (chart). The act of charting is a stimulus to vigilance and necessarily includes data review. Allowing recording to occur without review removes one important aid we have to patient care.

THEODORE A. NOEL, II, M.D.
Staff Anesthesiologist
Florida Hospital Medical Center
601 East Rollins
Orlando, Florida 32803

REFERENCE

1. Noel TA II: Computerized anesthesia records may be dangerous. ANESTHESIOLOGY 64:300, 1986
 (Accepted for publication March 27, 1986.)

Anesthesiology
65:135, 1986

Neuromuscular Blockade Variability

To the Editor:—In the recent report by Salzarulo and Taylor on diabetic "stiff joint syndrome," the authors describe a patient in whom a large difference was noted when neuromuscular blockade was assessed by stimulating the facial and ulnar nerves. They attribute this phenomenon to the patient's juvenile onset diabetes mellitus.

Stiffel et al. extensively studied this variability in assessing neuromuscular blockade. They noted that train-of-four stimulation of the facial nerve consistently will show a greater number of twitches than will stimulation of the ulnar nerve in 15 ASA Status I, II, and III patients, regardless of their underlying medical problems. Our own experience confirms this result.

MITSHEL SOSIS, M.D., PH.D.
Assistant Professor of Anesthesiology
Jefferson Medical College
Thomas Jefferson University
Philadelphia, Pennsylvania 19107

REFERENCES

 (Accepted for publication March 27, 1986.)

Anesthesiology
65:133-134, 1986

Placement of ECG Electrodes during Extracorporeal Shock-wave Lithotripsy

To the Editor:—During extracorporeal shock-wave lithotripsy (ESWL), the shock waves are synchronized with the patient's ECG by triggering 20 ms after the QRS complex. This is accomplished by means of a cable carrying the analog ECG signal to the lithotripter, which has its own QRS detection circuit. Thus a high-quality ECG signal is needed before the treatment can proceed.

Since most of the patient's body is immersed in water, there is limited flexibility in electrode placement. A common and convenient way to keep electrodes on dry skin

Downloaded From: http://anesthesiology.pubs.asahq.org/pdfaccess.ashx?url=/data/journals/jasa/931398/ on 05/13/2018
CORRESPONDENCE

is to place the arm electrodes near the elbows and to place the left leg (reference) electrode on the forehead. This preserves lead I but makes leads II and III unsuitable because of noisy, low-voltage signals. On occasion, we have found this electrode placement to be unsatisfactory because of a poor lead-I signal as well. In such cases, the patient’s 12-lead ECG taken preoperatively has shown a predominantly vertical ventricular axis, with nearly isoelectric QRS complexes in lead I.

One solution to this problem is to put an electrode covered with a waterproof dressing on the left leg and monitor a true lead II. In order to predict which patients will require special electrode placement, we recommend that the preoperative ECG (if available) be examined for ventricular axis before choosing a monitoring lead for ESWL.

ANDREW J. SARNAT, M.D.
MARK H. ZORNOW, M.D.
Assistant Clinical Professor
Department of Anesthesia, H-770
University of California, San Diego
UCSD Medical Center
225 Dickinson Street
San Diego, California 92103

(Accepted for publication March 28, 1986.)