CORRESPONDENCE

M. C. S. JESUDIAN, M.D.
Instructor

MICHAEL ESTES, M.D.
Assistant Professor

Department of Anesthesiology
Medical College of Virginia
P. O. Box 695
Richmond, Virginia 23298

(Accepted for publication March 17, 1986.)

Anesthesiology
65:128, 1986

Blood Gas Values Change Slowly in Apneic Organ Donors

To the Editor—Brain-dead organ donors were ventilated with a fractional inspired O₂ concentration (FₐO₂) of 1.0 during bilateral nephrectomy, then disconnected from the ventilator. ECG evidence of death commonly occurred 15–20 min later. This time was longer than expected, and prompted a study exempted from Institutional Review Board review so long as anonymity of the patient was preserved. Samples were taken each minute after ventilation was discontinued, for a total of ten samples, from arterial lines in each of four donors. Endotracheal tubes were in place, open to room air. The PaO₂ values were used to calculate least-square regression lines. PaO₂ fell linearly with time, and the slopes were -17, -21, -27, and -28 mmHg PaO₂ per min for the four donors. Since the PaO₂ just before ventilation stopped was between 360–515 mmHg for these donors, hypoxemia (PaO₂ < 90 mmHg) did not develop nearly as quickly as would be true of living patients, such as those studied by Heller and Watson.¹ Those authors reported four patients whose PaO₂, during apnea after breathing 100% O₂, decreased at an average rate of 57.5 mmHg/min. Our donors differed from their patients in that several major sources of O₂ utilization were absent; the kidneys were removed before the blood was sampled, and the brains were surely capable of only minimal metabolism. The PaCO₂ rose slowly, at a mean rate of 1.7 mmHg/min, presumably for the same reason. This may be of interest to those attempting to establish brain death by the apnea test described by Grenvik,² which requires that apnea be present when the PaCO₂ is greater than 60 mmHg and the PaO₂ less than 50 mmHg after discontinuation of mechanical ventilation. Although such a patient would still have kidneys, brain death could slow the PaCO₂ ascent and PaO₂ descent enough to make the wait for such values to be reached a long one, indeed, if the test were begun at hypocarbia, hyperoxic levels.

DAVID L. BRUCE, M.D.
Professor and Chairman
Department of Anesthesiology
University of Mississippi Medical Center
2500 N. State Street
Jackson, Mississippi 39216

REFERENCES


(Accepted for publication March 17, 1986.)

Anesthesiology
65:128-129, 1986

Ethacrynic Acid Interferes with Vasodilators

To the Editor—Johnston et al.¹ report a case of apparent rebound hypertension following abrupt cessation of clonidine therapy. In the immediate postoperative period, their patient developed hypertension that was refractory to a number of pharmacologic interventions, including intravenous infusions of nitroglycerin and nitroprusside. By chance, one of the other therapeutic agents used to control the hypertension was ethacrynic acid. It is possible that the use of ethacrynic acid may have contributed to the lack of response to intravenous vasodilator therapy.

Many of the direct vasodilating agents act via a common intermediate reaction involving sulphydryl groups within the vascular smooth muscle membrane.² Ethacrynic acid reacts with sulphydryl groups and may block this common intermediate vasodilator reaction.³ This effect may cause a refractory response to vasodilator therapy.

If ethacrynic acid was administered to the patient prior to institution of intravenous vasodilator therapy, such therapy could account, in part, for the lack of response despite large doses of nitroglycerin and nitroprusside. In
contrast clonidine, a relatively specific alpha-2 agonist that acts indirectly by reducing central nervous system sympathetic outflow, would not be blocked by the actions of ethacrynic acid. The mechanism for poor absorption in critically ill patients proposed by the authors may account for the ability of rectally administered clonidine to control hypertension in their patient when oral clonidine failed.

MICHAEL P. HOSKING, M.D.
Resident in Anesthesiology
Mayo Graduate School of Medicine
Mayo Clinic
Rochester, Minnesota 55905

In reply: We thank Dr. Hosking for his comments and concern that the use of ethacrynic acid may have interfered with the vasodilator actions of both nitroglycerin and nitroprusside.

We reexamined our cases and noted that the first patient received ethacrynic acid, but as a secondary measure late in the course of managing her hypertension. None of the other five cases received ethacrynic acid. Therefore, we do not feel that ethacrynic acid interfered with the vasodilators in the first case. We will certainly keep this drug interaction in mind for future reference.

ROBERT V. JOHNSTON, JR., M.D.
Assistant Professor

Anesthesiology
65:129–130, 1986

Fail-safe Oxygen Analyzers

To the Editor—Whenever nitrous oxide is supplied to an anesthesia circuit, there is a real possibility that a hypoxic mixture will be delivered secondary to human error in setting the flow controls. Less commonly, inaccurate or leaky flowmeters in conjunction with N2O can lead to hypoxia. Use of an oxygen analyzer allows early detection of these errors but is often vitiated by another human error, failure to turn the analyzer on. A modification of the anesthesia machine could guarantee that nitrous oxide will only be used when the oxygen analyzer is on.

An electromechanical fail-safe valve should be placed in the nitrous oxide intermediate pressure line. This valve would only be opened by a solenoid that is activated when the oxygen analyzer is turned on. Nitrous oxide could not be delivered unless the O2 analyzer is turned on! If the machine is equipped with air or N2, these lines should also have electromechanical fail-safes. Of course the low O2 alarm must have a default preventing settings below 20%. Perhaps the fail-safe analyzer should be further refined to shut the valves automatically whenever reading below 20%, thus allowing only oxygen to be delivered to...