In reply.—'Tis true that I initially criticized their primate model (because they failed to demonstrate absence of cerebral blood flow in individual animals during ischemia and because neurologic function was assessed by a nonblinded observer). 'Tis also true that we later invited a then post member of the Pittsburgh group (Gisvold) to introduce the basic model into our laboratory. The final truth is that we modified the model in order to demonstrate absence of cerebral blood flow in individual animals during ischemia and to provide for blinded evaluation of the animal's neurologic status postischemia.¹ It is now a good model.

Anesthesiology
65:235–236, 1986

Position of Proximal Orifice Determines Electrocardiogram Recorded from Multiorificed Catheter

To the Editor.—Johans¹ reported that the intravascular electrocardiogram (ECG) monitored with a multiorificed catheter depends on the position of the proximal orifice, and that further work is needed to explain this finding. Examination of the electrical principles involved make this finding predictable.

The saline-filled catheter is a conductor with a different voltage source at each orifice provided by the summed electrical activity of the heart at that orifice. The electrocardiograph is electrically connected to the proximal orifice by a column of saline with impedance Z_c. The voltage measured by the electrocardiograph, V_{ECG}, is related to the voltage at the proximal orifice, V_p, by the following equation:

$$V_{ECG} = V_p - I_c Z_c$$

where I_c is the current flowing from the orifice to the electrocardiograph. Because the electrocardiograph has a high-input impedance compared with Z_c, I_c approaches 0, and V_{ECG} must nearly equal V_p. Johans' observation that this relationship is true confirms the expectation that the summed electrical activity of the heart at the proximal orifice provides an independent voltage source unaffected by voltages at more distal orifices.

Anesthesiology
65:235, 1986

References

(Accepted for publication May 8, 1986.)

JOHN D. MICHENFELDER, M.D.
Professor of Anesthesiology
Mayo Medical School and Mayo Clinic
Rochester, Minnesota

Anesthesiology
65:235–236, 1986

In reply.—'Tis true that I initially criticized their primate model (because they failed to demonstrate absence of cerebral blood flow in individual animals during ischemia and because neurologic function was assessed by a nonblinded observer). 'Tis also true that we later invited a then post member of the Pittsburgh group (Gisvold) to introduce the basic model into our laboratory. The final truth is that we modified the model in order to demonstrate absence of cerebral blood flow in individual animals during ischemia and to provide for blinded evaluation of the animal’s neurologic status postischemia.¹ It is now a good model.
The Use of an Extension Line in Epidural Anesthesia

To the Editor:—Two options that exist for epidural injection are through the needle or through the catheter. Those who prefer the needle as an injection port usually attach the syringe to the needle, then introduce incremental doses of local anesthetic with or without removal of the syringe.

As a modification of the traditional “injection by needle” technique, we place an extension line with a “T” (Abbott® 4616) between the Touhy needle and the syringe (fig. 1). The connector requires only 0.33 ml for priming and has little effect on the typical sensation during the injection, while the built-in clamp prevents back-flow.

In addition, the absence of a Luer®-type twist lock between the needle and the extension line makes the connection simple, further reducing the risk of inadvertent reposition of the needle.

SIMON GURMARNIK, M.D.
Department of Anesthesiology
The Park City Hospital
695 Park Avenue
Bridgeport, Connecticut 06604

Tracheo-bronchial Angles in Infants and Children

To the Editor:—The article by Kubota et al.¹ documents the fact that there is indeed a difference in the angles subtended by the left and right mainstem bronchi at the carina in infants and children. They have, hopefully, settled a long-standing controversy.

However, they quote Brown and Fisk² (not Fish) as stating that the bevel of the endotracheal tube usually lies to the right on insertion. The fact is that the bevel of the tube faces to the left following insertion, as stated by Brown and Fisk, and the tip of the tube therefore lies to the right of the midline of the trachea. This is the reason for the fact that the tube invariably enters the right mainstem bronchus. The normal bronchial angles are of no real significance. In fact, if one wishes deliberately to advance the tube into the left bronchus, it can be done by rotating the tube through 180° before advancing it beyond the carina.

EDMOND C. BLOCH, F.F.A.R.C.S.
Associate Professor of Anesthesiology
Duke University Medical Center
Durham, North Carolina 27710

REFERENCE

(Accepted for publication April 11, 1986.)