Effect of Intravenous Epinephrine on Uterine Artery Blood Flow Velocity in the Pregnant Guinea Pig

The purpose of the present study was to determine the effect of intravenously administered epinephrine on the maternal cardiovascular response and uterine artery blood flow velocity (UBVF) in the pregnant guinea pig. Epinephrine (0.2, 0.5, and 1.0 μg/kg) and lidocaine (0.4 mg/kg, with and without 0.2 μg/kg of epinephrine) were administered intravenously to seven chronically instrumented pregnant guinea pigs near term. Lidocaine without epinephrine did not significantly alter maternal heart rate (MHR), maternal mean arterial pressure (MMPA), or UBVF. Epinephrine, with and without lidocaine, resulted in a transient decrease in MHR. Further, epinephrine, with and without lidocaine, resulted in significant elevations in MMPA and significant, dose-related reductions in UBVF. Mean (+SEM) UBVF was 72 ± 4%, 56 ± 4%, and 40 ± 5% of baseline at 30 s after administration of epinephrine, 0.2, 0.5, and 1.0 μg/kg, respectively. It is concluded that these small additional boluses of epinephrine result in significant, although transient, reductions in UBVF in the pregnant guinea pig. (Key words: Anesthesia: obstetric. Anesthetics: local. Lidocaine. Measurement techniques: Doppler flow probe. Sympathetic nervous system. Catecholamines: epinephrine. Uterus: blood flow velocity.)

DURING INDUCTION OF epidural anesthesia, a test dose of local anesthetic is administered to detect inadvertent intravenous or subarachnoid injection. The potential for local anesthetic toxicity has prompted discussion regarding the ideal composition of the epidural test dose. Moore and Batra† administered epinephrine intravenously to nonpregnant volunteers and medicated surgical patients. They concluded that the epidural test dose should include 15 μg of epinephrine. A transient increase in heart rate would indicate that the test dose had been injected intravenously, and that the needle or catheter should be repositioned prior to additional injection of local anesthetic. Recently Abraham et al.‡ recommended 2 ml of 1.5% lidocaine in 7.5% dextrose, with 15 μg of epinephrine, as an ideal obstetric test dose.

To our knowledge, there are no published data regarding the effect of 15 μg of intravenously administered epinephrine on uteroplacental blood flow in the human. Ethical constraints limit the potential for performing such a study. The purpose of the present study was to determine the effect of intravenously administered epinephrine on the maternal cardiovascular response and uterine artery blood flow velocity (UBVF) in the chronically instrumented pregnant guinea pig. The advantages of the guinea pig include a hemomonochorial placenta (labyrinth type), cyclic changes in serum estrogen and progesterone concentrations qualitatively similar to those observed in women, and cardiovascular/respiratory alterations during pregnancy analogous to those in women.3-7

Materials and Methods

We used pulsed Doppler ultrasound to monitor continuously UBVF in the pregnant guinea pig. We measured the magnitude of change in the Doppler shift, and we have reported all measurements as per cent change from baseline. Validation of this model was recently reported in detail; the measured flow velocity was both directly proportional and linear to actual uterine artery blood flow (R = 0.984).8

The protocol was approved by the University of Iowa Animal Care Committee. Briefly, mixed breed guinea pigs of known mating were obtained from a commercial breeder and allowed to acclimate to the laboratory environment for 3 days. Using sterile technique and general anesthesia (intramuscular xylazine 0.8 mg/kg and intraperitoneal ketamine 80 mg/kg, supplemented by local infiltration of 1.0% lidocaine), a ventral, midline neck incision was performed, and catheters (polyethylene 50, inside diameter 0.58 mm, outside diameter 0.96 mm) were inserted into the external jugular vein and carotid artery. The arterial catheter was advanced into the descending aorta below the origin of the renal arteries but above the origin of the uterine vessels. Through a midline abdominal incision, a 5–10 mm segment of uterine artery between two pups was dissected free from the mesometrium using microsurgical techniques, and a miniaturized Doppler flow probe (20 mHz crystal, 0.75 mm in diameter, 100 mg in weight) was fixed to the underside of the vessel using a cyanoacrylic glue. A probe shield was constructed in situ using a medical-grade silicone polymer. Probe wires and catheters were exteriorized via a stab wound in the

* Assistant Professor of Anesthesia and Obstetrics and Gynecology.
† Assistant Professor of Obstetrics and Gynecology.
‡ Medical Student.
§ Research Assistant.

Received from the Departments of Anesthesia and Obstetrics and Gynecology, University of Iowa College of Medicine, Iowa City, Iowa 52242. Accepted for publication July 28, 1986. Supported in part by Biomedical Research Support Grant PR05372 from the Biomedical Research Support Branch, Division of Research Facilities and Resources, National Institutes of Health, and by Basil O'Connor Starter Research Grant 5-482 from the March of Dimes Birth Defects Foundation. Presented in part at the Annual Meeting of the American Society of Anesthesiologists, San Francisco, California, October 16, 1985.

Address reprint requests to Dr. Chestnut.
nape of the neck. Catheter patency was maintained by a daily 1-ml bolus of a heparin–saline solution (300 U/ml).

After surgery the animals remained in individual cages. Guinea pig chow and water were supplied ad libitum and supplemented with fresh vegetables. The room lights were cycled (12 hours on, 12 hours off). No experiments were undertaken until normal weight gain and activity had resumed, and in no case before the fourth postoperative day. All experiments were performed with the animal in familiar surroundings, with unimpaired mobility.

Experiments were performed between 45 and 60 days gestation (term = 65 days). Animal weights on experiment days varied between 710 and 1100 g (mean ± SD = 913 ± 119 g). Maternal heart rate (MHR) and maternal mean arterial pressure (MMP) were obtained through the arterial catheter (Electromedics transducer, model #MS20-BAD07ADS). MHR, MMP, and mean UBVF were recorded continuously on a biomedical strip chart recorder. Fifteen experiments were performed in seven animals. Each experiment was preceded by a control period of at least 1 h. In each experiment, each animal received, in random order, epinephrine 0.2 and 0.5 µg/kg; and 0.4 mg/kg of lidocaine (Xylocaine® 1.5% with dextrose 7.5%, Astra Pharmaceutical Products, Westborough, MA), with and without 0.2 µg/kg of epinephrine. During 11 of these 15 experiments, six animals also received 1.0 µg/kg of epinephrine. Each drug was mixed with saline (total volume = 0.2 ml) and administered intravenously over 15 s. MHR, MMP, and UBVF were allowed to return to within 10% of control before administration of the subsequent drug solution. The minimum interval between doses was 15 min. Changes in MHR, MMP, and UBVF during the 5 min after drug administration were compared with the baseline observed before drug administration. All results are reported as mean (±SEM) per cent of baseline.

Maximal changes in MHR were assessed by analysis of co-variance. Changes in MMP and UBVF over time were analyzed by analysis of variance with repeated measures, with Bonferroni adjustment. The mean differences among the drug–dose categories were examined by the Tukey Studentized-range multiple comparison technique. P < 0.05 was considered significant.

Results

Each dose of epinephrine, with and without lidocaine, resulted in a transient decrease in MHR (table 1). Maternal heart rate usually returned to baseline within 30 s of administration of epinephrine, and always returned to baseline within 60 s. Only the lidocaine without epinephrine did not significantly alter MHR.

Tables 2 and 3 include the changes over time in MMP and UBVF. Epinephrine, 0.2 µg/kg, produced a modest elevation in MMP, which was significantly different from baseline only at 30 s after injection. UBVF was 72 ± 4% of baseline at 30 s and remained significantly below baseline through 90 s.

Epinephrine, 0.5 µg/kg, resulted in a significant increase in MMP through 1 min after injection. UBVF was 56 ± 4% of baseline at 30 s and remained significantly below baseline through 4 min.

Epinephrine, 1.0 µg/kg, resulted in a significant increase in MMP through 90 s after injection. UBVF was 40 ± 5% of baseline at 30 s and remained significantly below baseline through 4 min.

Lidocaine without epinephrine did not significantly al-

Table 1. Maximal Change in Maternal Heart Rate

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dosage</th>
<th>N*</th>
<th>Mean ± SEM, % of Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epinephrine</td>
<td>0.2 µg/kg</td>
<td>7/15</td>
<td>92 ± 2†</td>
</tr>
<tr>
<td>Epinephrine</td>
<td>0.5 µg/kg</td>
<td>7/15</td>
<td>92 ± 2†</td>
</tr>
<tr>
<td>Epinephrine</td>
<td>1.0 µg/kg</td>
<td>6/11</td>
<td>86 ± 2†</td>
</tr>
<tr>
<td>Lidocaine</td>
<td>0.4 mg/kg</td>
<td>7/15</td>
<td>97 ± 2</td>
</tr>
<tr>
<td>Without epinephrine</td>
<td>0.2 µg/kg</td>
<td>7/15</td>
<td>92 ± 2†</td>
</tr>
</tbody>
</table>

* Animals/experiments.
† P < 0.05, when compared with baseline.

Table 2. Change in Maternal Mean Arterial Pressure (% of baseline)

<table>
<thead>
<tr>
<th>Drug</th>
<th>N*</th>
<th>0</th>
<th>30</th>
<th>60</th>
<th>90</th>
<th>120</th>
<th>180</th>
<th>240</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epinephrine</td>
<td>0.2 µg/kg</td>
<td>7/15</td>
<td>100</td>
<td>113 ± 3†</td>
<td>106 ± 3</td>
<td>102 ± 3</td>
<td>99 ± 3</td>
<td>98 ± 3</td>
<td>97 ± 3</td>
</tr>
<tr>
<td>Epinephrine</td>
<td>0.5 µg/kg</td>
<td>7/15</td>
<td>100</td>
<td>121 ± 3†</td>
<td>114 ± 3†</td>
<td>103 ± 3</td>
<td>102 ± 3</td>
<td>100 ± 3</td>
<td>95 ± 3</td>
</tr>
<tr>
<td>Epinephrine</td>
<td>1.0 µg/kg</td>
<td>6/11</td>
<td>100</td>
<td>135 ± 4†</td>
<td>117 ± 4†</td>
<td>108 ± 4†</td>
<td>106 ± 4</td>
<td>104 ± 4</td>
<td>104 ± 4</td>
</tr>
<tr>
<td>Lidocaine</td>
<td>0.4 mg/kg</td>
<td>7/15</td>
<td>100</td>
<td>107 ± 4</td>
<td>103 ± 4</td>
<td>104 ± 4</td>
<td>102 ± 4</td>
<td>104 ± 4</td>
<td>103 ± 4</td>
</tr>
<tr>
<td>Lidocaine, with epinephrine</td>
<td>0.4 mg/kg</td>
<td>7/15</td>
<td>100</td>
<td>111 ± 3†</td>
<td>105 ± 3</td>
<td>101 ± 3</td>
<td>99 ± 3</td>
<td>98 ± 3</td>
<td>99 ± 3</td>
</tr>
</tbody>
</table>

All values are expressed as per cent of control and recorded as mean ± SEM.

* Animals/experiments.
† P < 0.05, when compared with baseline.
TABLE 3. Change in Uterine Blood Flow Velocity (% of baseline)

<table>
<thead>
<tr>
<th>Drug</th>
<th>Seconds Following Injection of Test Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Epinephrine, 0.2 μg/kg</td>
<td>7/15</td>
</tr>
<tr>
<td>Epinephrine, 0.5 μg/kg</td>
<td>7/15</td>
</tr>
<tr>
<td>Epinephrine, 1.0 μg/kg</td>
<td>6/11</td>
</tr>
<tr>
<td>Lidocaine, 0.4 mg/kg</td>
<td>7/15</td>
</tr>
<tr>
<td>Lidocaine, 0.4 mg/kg, with epinephrine, 0.2 μg/kg</td>
<td>7/15</td>
</tr>
</tbody>
</table>

All values are expressed as mean ± SEM. {

* Animals/experiments.
† P < 0.05, when compared with baseline.

Discussion

Wallis et al.\(^9\) reported a 14% decrease in uterine blood flow during the first 15 min after induction of epidural anesthesia in normotensive pregnant sheep with 2-chloroprocaine and 60–80 μg of epinephrine. Three subsequent investigations examined the effects of 20–100 μg of epidurally administered epinephrine on human intervillous blood flow measured by intravenous injection of radioactive xenon.\(^10\)\(^–\)\(^12\) No significant decrease in intervillous blood flow was demonstrated.

The epinephrine was administered epidurally in the aforementioned four studies. However, inadvertent cannulation of an engorged epidual vein occurs commonly in obstetric patients.\(^2\)\(^,\)\(^13\) Greiss\(^14\) reported dose-related reductions in uterine blood flow after continuous intravenous administration of 0.1–1.0 μg · kg\(^{-1}\) · min\(^{-1}\) epinephrine in gravid ewes. Further, Greiss reported that "changes in uterine conductance persisted long after blood pressure had returned to preinfusion levels."\(^1\)\(^4\) Similarly, Rosenfeld et al.\(^15\) administered to gravid ewes a continuous intravenous infusion of 0.2 to 0.4 μg · kg\(^{-1}\) · min\(^{-1}\) of epinephrine. They demonstrated a 39% reduction in uterine artery blood flow, which is midway between the 28% and 44% reductions in UBFV that we have observed after bolus intravenous epinephrine injections of 0.2 and 0.5 μg/kg, respectively. Using microspheres, Rosenfeld et al.\(^15\) also found that the vasculature of all three uterine tissues (endometrium, myometrium, and placenta) was sensitive to the vasoconstrictive effects of epinephrine. Recently Hood et al.\(^16\) reported dose-related reductions in uterine blood flow for 3 min after bolus intravenous injection of 5, 10, and 20 μg of epinephrine in gravid ewes.

The results of the present study complement previous studies that used different methodology (electromagnetic flow probe\(^14\)\(^,\)\(^16\) and microspheres\(^15\)) in a different species. Further, in both the present study and the study of Hood et al.,\(^16\) a bolus of epinephrine, comparable to that included in the epidural test dose, was administered. When calculated on a mg/kg basis, the smallest dose of epinephrine (0.2 μg/kg) administered in the present study approximates the recommended epidural test dose of epinephrine\(^12\) administered to a patient weighing 75 kg.

Hood et al.\(^16\) and we observed hypertension similar in magnitude and duration to that observed by Moore and Batra\(^1\) after intravenous administration of 15 μg of epi-

FIG. 1. Response over time of maternal mean arterial pressure (MAP). All values are expressed as mean (±SEM) % of baseline. EPI = epinephrine; LIDO = lidocaine. The mean response in MAP to 1.0 μg/kg epinephrine was significantly greater than all other responses except that with epinephrine, 0.5 μg/kg.
nephrine to nonpregnant volunteers. However, both Hood et al. and we observed that intravenous epinephrine consistently resulted in a transient decrease in heart rate rather than a tachycardia. In contrast, Moore and Batra observed an initial decrease in heart rate in only 19% of their patients. Hood et al. speculated that their pregnant ewes may have had “a more sensitive baro-receptor response to epinephrine-induced hypertension than did the human subjects in Moore and Batra’s study.” While the difference in heart rate response may reflect species difference, a difference in the ratio of alpha/beta receptor occupation cannot be excluded. It is significant that Greiss, Hood et al., and we observed that the decrease in uterine blood flow/UBVF was consistently of greater duration than the duration of the maternal cardiovascular response.

The dose of lidocaine (0.4 mg/kg) administered in the present study approximates the epidural test dose of lidocaine recommended by Abraham et al. To our knowledge, there is no previously published study of the effect of intravenously administered lidocaine with epinephrine on uterine blood flow or UBFV. In contrast, the lack of significant change in UBFV after a bolus intravenous injection of lidocaine without epinephrine is consistent with the study reported by Biehl et al. They observed no significant change in uterine blood flow in gravid ewes subjected to continuous intravenous infusion of 0.15–0.25 mg·kg⁻¹·min⁻¹ of lidocaine. We conclude that small intravenous boluses of epinephrine result in significant, although transient, reductions in UBFV in the pregnant guinea pig. While we acknowledge that these results were obtained in the guinea pig rather than in the human, the similar results obtained in both pregnant sheep and guinea pigs suggest that this effect is not limited to one species.

References

2. Abraham RA, Harris AP, Maxwell LG, Kaplow S: The efficacy of 1.5% lidocaine with 7.5% dextrose and epinephrine as an epidural test dose for obstetrics. Anesthesiology 64:116–119, 1986