Effects of Barbiturate Anesthesia on Functional Residual Capacity and Ribcage/Diaphragm Contributions to Ventilation

Philip E. Bickler, Ph.D.,* Ronald Dueck, M.D.,† Richard J. Prutow, M.D., Ph.D.‡

The effect of iv methohexital infusion anesthesia on functional residual capacity (FRC) (helium dilution) in 14 surgical patients (age 23 to 59 yr) was determined. Eight subjects were studied wearing a noninflatable mask, sealed with surgical lubricant. They showed a mean ± SD 3.5 ± 6.4% FRC decrease (no significance). Six subjects studied via mouthpiece awake and via endotracheal tube during anesthesia showed a mean 22 ± 19% reduction in FRC, significantly greater than face mask studies (P < 0.05). The greatest FRC decrease occurred in subjects with repetitive or protracted coughing after intubation. The serum methohexital level was 6.6 ± 3.6 µg/ml for intubated patients, and 6.0 ± 1.1 µg/ml in those with face mask (no significance). The depth of anesthesia was sufficient to produce a 50% reduction in ventilatory response to CO2 rebreathing, from 15.8 to 8.7 1/min/µmol CO2. Respirac* plethysmography indicated a 38 ± 12% ribcage contribution to tidal volume during quiet breathing, which increased to 47 ± 14% with CO2 breathing (end-tidal FCO2 9–10%). There was no diminution of ribcage contribution during anesthesia in either group, irrespective of CO2 concentration. The authors interpret their findings to indicate that iv methohexital anesthesia does not produce FRC reduction, in contrast to an inhaled anesthetic such as halothane. It is proposed that this difference may be related to maintenance of coordinated ribcage/diaphragm muscle activity, because ribcage activity is markedly suppressed by halothane. In addition, it is proposed that FRC reduction in intubated subjects was the result of a confounding variable, namely coughing in response to the endotracheal tube. (Key words: Anesthetics, intravenous; barbiturate; methohexital. Muscle: diaphragm; intercostals. Ventilation: functional residual capacity; pattern of breathing.)

REDUCTION IN FUNCTIONAL residual capacity (FRC) is a commonly reported feature of general anesthesia.1,2 Despite numerous studies, the cause of the reduction in FRC has remained elusive. Most explanations have centered on changes in the properties of the ventilatory muscles. Froese and Bryan proposed that this was due to a cephalad displacement of the diaphragm, seen both with and without muscle paralysis.3 Tusiewicz et al.4 and Jones et al.5 suggested that loss of phasic and tonic ribcage muscle activity probably contributes to the fall in lung volume during spontaneous ventilation with halothane anesthesia. This was supported by Hedenstierna et al. who showed reduction in the transverse area of the thorax as well as cephalad displacement of the diaphragm.6 Diaphragm activity, however, has been shown to be minimally affected during 1 MAC halothane anesthesia, when intercostal muscle response to CO2 was suppressed by 89%.4 This finding led Tusiewicz et al. to speculate that halothane causes preferential suppression of the spinal intercostal neurons pool rather than only brain stem respiratory depression.4

A recent observation in sheep studies led us to speculate that such preferential suppression of ribcage activity may not be a feature of all general anesthetics. Barbiturate anesthesia, in contrast to halothane, did not produce a significant decrease in FRC.7 A review of the anesthesia literature shows that Colgan and Whang also reported no change in FRC with barbiturate anesthesia in spontaneously breathing human subjects.8 Howell and Peckett9 and Bergman10 found reductions of less than 200 ml in end-expiratory position (closed-circuit spirometry via face mask) following administration of thiopental. In contrast, studies employing endotracheal intubation, muscle paralysis, and mechanical ventilation, or inhalation anesthetic agents have all shown FRC reduction on the order of 400 ml (i.e., 15–20% reduction in awake control FRC). We therefore wished to address the specific question: does iv barbiturate anesthesia cause FRC reduction and loss of ribcage contribution to tidal ventilation?

Methods

SUBJECTS

Fourteen male surgery patients (age 23–59 yr) were selected on the basis of a normal pulmonary history (no previous or current respiratory disease, no recent upper respiratory infections), and no history of cardiovascular disease or major medical illnesses. None were obese, as defined by a body mass index (BMI) of more than 29 (BMI = weight (kg)/height (m)²). Four of the subjects were cigarette smokers (10–20 pack-year histories). Approval of the protocol was obtained from the University Human Subjects Committee, and written informed consent was obtained from each subject.

The subjects received no preoperative medications. On the morning of surgery spirometric pulmonary function tests were administered to 13 of the 14 subjects. A Steadwell 9 l spirometer was used to measure tidal volume, vital capacity, forced expired volume at 1 and 3 s, maximum ventilatory ventilation and forced expiratory flow (FEF 25–75%).

* Medical Student.
† Associate Professor.
‡ Assistant Professor.

Received from the Department of Anesthesiology, University of California and Veterans Administration Medical Center, San Diego, California, and the School of Medicine, University of California at San Diego, La Jolla, California. Accepted for publication September 3, 1986.

Address reprint requests to Dr. Bickler: 1386 Health Sciences East, University of California, San Francisco, California 94116.
MEASUREMENT TECHNIQUES

FRC was measured by closed-circuit helium dilution. Oxygen was metered into the closed circuit at a rate achieving constant volume of the test circuit. Thorough mixing of gas in the spirometer and connecting tubing was insured by a mixing fan. The fractional helium content \((F_{He}) \) was checked periodically, and the final \(F_{He} \) was not recorded until it had reached a constant level (5–7 min). Total closed-circuit volume measurements were corrected for the helium lost with each gas sample.

Because increased flow resistance due to upper airway relaxation and collapse during anesthesia could have dynamically increased FRC by trapping air in the lungs, ventilatory flow rates were measured in three subjects. A large-bore pneumotachograph (Fleisch #00) was included just distal to the face mask. Ventilatory flow rates were then evaluated during the FRC determinations to rule out flow interruption prior to the end of expiratory ribcage or abdominal motion. The pneumotachograph was calibrated against a rotameter flowmeter by passing compressed air through both simultaneously. The response was linear over the range of flows encountered in vivo (0–5 l/s).

The individual contributions of the ribcage (primarily intercostal muscles) and abdominal (primarily diaphragm) compartments to tidal ventilation were measured with an inductance plethysmograph (Respirtrace Corp., Ardsley, NY). The elastic transducer bands were calibrated while the patient was awake and breathing normally into the 9-l spirometer in both seated and supine position.\(^{11,12}\) Ink marks on the skin were used to reposition the bands if they moved. The separate signals from the ribcage, abdomen, and a sum channel (ribcage + abdomen) were displayed on a strip chart recorder. During FRC determinations and during the \(CO_2 \) rebreathing tests, tidal volume was simultaneously measured with the spirometer and plethysmograph. In a report by Zimmerman et al. the accuracy of the Respirtrace\(^*\) in determining tidal volume was called into question.\(^{13}\) We therefore compared the independent and simultaneously measured tidal volumes determined by Respirtrace\(^*\) sum channel with that of the spirometer for a series of 40 breaths spanning a large range of volume in nine awake subjects during FRC determination and in another series of 40 breaths in eight awake subjects during \(CO_2 \) stimulated ventilation. An equal number of measurements (total of 160 breaths) were made on the same subjects when anesthetized.

Compartmental contributions to ventilation were also measured during \(CO_2 \) stimulated ventilation using the modified Read rebreathing method.\(^{14}\) Each subject was studied while supine breathing through a rubber mouthpiece with snug nose-clip (\(n = 6 \)), or through a plastic face mask (\(n = 8 \)) sealed tightly around both the nose and mouth with an inflatable cuff and surgical lubricant. Inspiratory and expiratory volume and end-tidal \(CO_2 \) at the mouthpiece were measured continuously with the subject rebreathing from the 9 l spirometer filled initially with 6.5% \(CO_2 \) in \(O_2 \). The helium dilution mixing fan insured rapid system equilibration, but the baralyme canister was bypassed. The \(CO_2 \) level in the rebreathed gas steadily increased from 6.5 to a maximum of 10% end-tidal \(CO_2 \). A Perkin-Elmer MGA-100\(^*\) Mass Spectrometer was used to measure the fractional concentrations of He, \(CO_2 \), and \(O_2 \).

SUBJECT PREPARATION

Catheters were placed in a peripheral vein for anesthetic administration and in a radial artery for blood pressure and blood gas analysis using an IL-815\(^*\) blood gas analyzer. ECG electrodes were attached to each subject and in several cases, a transcutaneous \(PO_2 \) monitor was employed.

STUDY PROTOCOL

In supine awake subjects two or three determinations of FRC were made and arterial blood gases were measured while the subjects breathed room air or 30% \(O_2 \) in air. Blood samples were also obtained for later analysis of barbiturate levels (control). The \(CO_2 \) rebreathing test was then administered. In awake studies the FRC and \(CO_2 \) rebreathing tests were administered via a mouthpiece and snug nose-clip (first six subjects) or via a mask (last eight subjects).

Intravenous anesthesia was then administered by 50 to 100 mg incremental injections as well as by continuous infusion (IVAC\(^*\) of 15–30 mg/min of methohexitol (Brevital\(^*\)). The rate was adjusted to achieve stable breathing (regular rate and rhythm, minimal coughing or hiccupping), heart rate, and blood pressure. One patient in the tracheally intubated group (see following) received only thiopental, but with the same parameters for depth of anesthesia. After induction, the first six subjects were intubated with a cuffed tracheal tube placed with the aid of topical lidocaine. Eight subjects were not intubated but continued to breathe via the mask used for the awake portion of the study. In several of these latter subjects a latex nasopharyngeal or oral airway was inserted to improve upper airway patency. Then, measurements of FRC, \(CO_2 \) ventilatory response, and blood gas samples were obtained during periods of stable respiratory and circulatory conditions. At the end of the \(CO_2 \) rebreathing test, a blood sample was obtained for later analysis of serum barbiturate levels by nitrogen–phosphorus flame ionization detection (NP-FID) gas chromatography, using Bond Elut\(^*\) extraction columns (Analytchem International, Inc., Harbor City, CA), 3-foot glass chromatography columns packed with 3% poly A105 on Gas Chrom Q\(^*\) 100/120 mesh (Applied Science Laboratories, Deerfield, IL) and an amobarbital internal standard.
STATISTICAL TESTS

Unless specified, paired or standard t tests were used to compare the means of data from face mask or intubated groups. Linear regressions were calculated by the method of least squares. Analysis of co-variance was applied to the comparison of tidal volume measurements from spirometer and Respirace®. The degree of significance of increase in per cent contribution of the ribcage compartment to tidal volume was assessed by analysis of variance. P < 0.05 was required for significance in all cases.

Results

SUBJECT CHARACTERISTICS

Anthropometric data on the study subjects were: (means ± SD) age 37.1 ± 10.1 (range 23–59), height 1.78 ± 0.07 m, weight 77.8 ± 10.7 kg, BMI 24.4 ± 2.4 kg/m², and cigarette use 13.3 ± 8.2 pack-years (four subjects). Thirteen of the 14 subjects were administered pulmonary function tests prior to beginning the study. In these 13 subjects the tidal volume, vital capacity, forced vital capacity, forced expiratory volume at 1 and 3 s, FEF25–75%, and maximum ventilation volume were all within normal limits. There were no significant differences in age, pulmonary function tests, or anthropomorphic data between the group of patients tracheally intubated for the study and the group studied without intubation (inflatable mask).

FRC

Figure 1 presents a comparison of FRC in subjects before and after receiving methohexital. The mean awake FRC value for all subjects (mouthpiece and face mask) was 2.43 ± 0.50 (SD). There was no significant difference in awake control FRC of the eight face mask and six mouthpiece subjects (P > 0.1). Anesthesia produced a mean 22.3 ± 19.6% reduction in FRC compared with control in the six patients with tracheal intubation (range 2.9–54%) (P < 0.05, paired t test), compared with only a 3.5 ± 6.4% reduction in face mask subjects (not different from 0% reduction). The difference in FRC reduction between intubated and face mask groups was statistically significant (P < 0.05). Protracted coughing (10–30 s duration) in response to endotracheal tube placement was observed in five of the six intubated subjects, but no coughing was seen in those studied with a face mask.

Pneumotachograph recordings in three face-masked subjects showed no evidence of interruption in expiratory or inspiratory gas flow (due to airway obstruction) during the anesthesia FRC determinations. There was also a period of zero flow just preceding inspiration in essentially all breaths of the three subjects studied, suggesting that the lungs were free to reach their normal end tidal volume.

USE OF RIBCAGE AND ABDOMINAL MUSCLES AT REST

In the supine position, while breathing 30% O₂, 0% CO₂ in air, the ribcage compartment contributed an average 38 ± 12% of total tidal volume and the abdominal/diaphragm compartment the remaining 62 ± 9% of tidal volume. During anesthesia and quiet breathing corresponding values were 40 ± 15% and 60 ± 10% of tidal volume, respectively (awake anesthesia difference not significant).

SERUM BARBITURATE LEVELS

The total dose of methohexital received up to the start of the CO₂ rebreathing test was 15.0 ± 8.2 mg/kg (mean ± SD). Serum methohexital levels were 6.6 ± 3.6 μg/ml in intubated subjects and 6.0 ± 1.1 μg/ml in subjects studied with face masks (difference was not significant).

VENTILATORY RESPONSE DURING CARBON DIOXIDE REBREATHING TESTS

The ventilatory response to rebreathing CO₂ in awake supine subjects was described overall by the least-squares regression:

\[V_E = 155.4 \cdot (%CO_2\text{ET}) - 917.5 \quad (r = 0.96) \]

and that during anesthesia by the least-squares regression:

\[V_E = 87.2 \cdot (%CO_2\text{ET}) - 498.2 \quad (r = 0.97) \]

where \(V_E \) is in ml BTPS·kg⁻¹·min⁻¹ and ET = end-tidal. The slopes and intercepts are significantly different at the 0.001 level. These ventilation data are plotted in figure 2 in increments of 0.5% CO₂.
COMPARTMENTAL VENTILATION DURING CARBON DIOXIDE REBREATHING TESTS

Ribcage and abdomen compartment contributions to tidal volume are shown in figure 3. On average, during the entire CO₂ rebreathing test the ribcage contributed 47 ± 14% of tidal volume in awake subjects and 46 ± 15% of tidal volume (mean ± SD) during anesthesia. In figure 4 the percentage contribution of the ribcage compartment to tidal ventilation has been plotted against end-tidal CO₂ concentration. There was a significant increase in the contribution of the ribcage to tidal volume as end-tidal CO₂ increased from 6.5 to 10% in both awake and anesthetized subjects (P < 0.05). At a given level of end-tidal CO₂, the percentage contribution of the ribcage compartment to ventilation was not changed by methohexital anesthesia.

Simultaneous measurements of Respirac® and spirometer tidal volumes showed a correlation coefficient of 0.993 (n = 160) for both awake and anesthesia conditions. Further analysis demonstrated an average 4.2 ± 5.0% underestimate by the Respirac® in awake subjects during FRC determinations (n = 40 breaths, six subjects) and a 5.0 ± 4.0% underestimate during the CO₂ test. During anesthesia, the comparative figures were a 2.7 ± 6.1% overestimate during FRC measurement and 3.8 ± 6.4% underestimate during CO₂ rebreathing (no significance).

ARTERIAL BLOOD GAS VALUES

Arterial pH, P O₂, and P CO₂ in subjects breathing 30% O₂, 0% CO₂ in air for at least 10 min before and after induction of anesthesia are given in table 1. Values are as measured at 37°C and not corrected to patient temperature. The differences between awake and anesthesia values were significant (P < 0.05). Table 1 also shows that the alveolar-arterial P O₂ difference [P(A-a)O₂], alveolar P CO₂ calculated with the alveolar gas equation:

\[
\text{P A CO}_2 = \text{P I O}_2 - \frac{\text{P CO}_2}{R}
\]

where R is the respiratory exchange ratio (0.8), showed a modest but not statistically significant increase in either
EFFECTS OF BARBITURATES ON VENTILATION AND FRC

Table 1. Arterial Blood Gas Values and P(A – a)O₂ (mean ± SD) (n in parentheses) while Breathing 30% O₂, 70% N₂

<table>
<thead>
<tr>
<th></th>
<th>Awake</th>
<th>Anesthesia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mouthpiece</td>
<td>Face Mask</td>
</tr>
<tr>
<td>pH</td>
<td>7.39 ± 0.02 (6)</td>
<td>7.37 ± 0.03 (8)</td>
</tr>
<tr>
<td>Pco₂ mmHg</td>
<td>40.7 ± 1.8 (6)</td>
<td>43.1 ± 2.4 (8)</td>
</tr>
<tr>
<td>PaO₂ mmHg</td>
<td>122.5 ± 21.4 (4)</td>
<td>138.8 ± 11.0 (8)</td>
</tr>
<tr>
<td>P(A – a)O₂ mmHg</td>
<td>36.6 ± 21.4 (4)</td>
<td>20.6 ± 15.0 (8)</td>
</tr>
</tbody>
</table>

Temperature of blood gas electrodes was 37°C. *

Significant difference between anesthesia and awake values. Differences between awake and anesthesia P(A – a)O₂ values were not statistically significant.

...
We believe that our calibration and use of the Respi
trace® apparatus gave accurate measures of compartmental
ventilation. Some question does remain concerning the
magnitude of the change in volume–motion coefficients
with induction of anesthesia. In view of the excellent
correlation between spirometer and RespiTracetidal
volumes, we believe that any errors in relative compart-
mental contribution are small.

The depth of anesthesia achieved in the present study
was defined by serum methohexitol levels of 6.6 µg/ml
(i.e., within the “therapeutic window” of 3.4–10.7 µg/
ml).22 Second, the level of ventilatory depression with
methohexitol was about the same as seen with halothane
at 1 MAC (50% reduction in slope of CO2 response
curve).24 Finally, varying depth of methohexitol anes-
thesia as assessed by varying tidal volume during induction
and after supplemental bolus injections, did not produce
any significant change in per cent ribcage contribution to
tidal volume. Total dose of methohexitol similarly had no
relationship to percent ribcage contribution. This sup-
ports our impression that even if anesthetic depth varied
between patients or in an individual patient our conclusion
that ribcage activity is preserved would not be altered.

IMPACT ON GAS EXCHANGE

The significant inverse correlation between changes in
P(A – a)O2 and FRC supports the hypothesis that there is
a significant cause and effect relationship between FRC
reduction and impaired gas exchange. This argument is
weakened, however, by the absence of a statistically sig-
nificant difference in PaO2 or P(A – a)O2 between intu-
bated and face mask groups. We suspect that this was due
to both variability in respiratory depression and to the
relatively small FRC reduction in one-half the intubated
subjects. In any event, the average 12 mmHg increase in
P(A – a)O2 was substantially less than the 30 mmHg in-
crease reported by Hewlett et al. during spontaneous res-
breathing halothane/air at an FiO2 of 0.35.25

We conclude that methohexitol anesthesia used without
endotracheal intubation does not produce clinically sig-
nificant FRC reduction. This may be related to the ob-
servation that methohexitol does not alter the functional
coordination of the ribcage and diaphragm muscles.

References
1. Rehder K, Sessler AD, Marsh HM: General anesthesia and the
Butterworths, 1977, pp 68, 219
3. Froese AB, Bryan AC: Effects of anesthesia and paralysis on dia-
phragmatic mechanics in man. ANESTHESIOLOGY 41:242–255,
1974
4. Tusiewicz K, Bryan AC, Froese AB: Contributions of changing
rib cage–diaphragm interactions to the ventilatory depression of
halothane anesthesia. ANESTHESIOLOGY 47:392–357, 1977
5. Jones JG, Faithfull D, Jordan C, Mintz B: Ribcage movement dur-
L, Tokics L: Functional residual capacity, thoracoabdominal
dimensions, and central blood volume during general anesthesia
with muscle paralysis and mechanical ventilation. ANESTHE-
SIOL 62:247–254, 1985
7. Dueck R, Rathbun M, Greenburg AG: Lung volume and VA/Q
distribution response to intravenous versus inhalation anesthesia
in sheep. ANESTHESIOLOGY 61:55–65, 1984
8. Coogan PJ, Whang TB: Anesthesia and atelectasis. ANESTHE-
SIOL 29:917–922, 1968
9. Howell JBL, Peckett BW: Studies of the elastic properties of the
thorax of supine anaesthetized paralyzed human subjects. J
Physiol (Lond) 136:1–19, 1957
10. Bergman NA: Reduction in resting end-expiratory pressure of
the respiratory system: a comparison with the respiratory system
with induction of anesthesia. ANESTHESIOLOGY 57:14–17, 1982
11. Sharp JT, Goldberg NB, Druz WS, Donan J: Relative contribu-
tions of ribcage and abdomen to breathing in normal subjects. J
Appl Physiol 39:608–618, 1975
of ribcage and abdomen during breathing. J Appl Physiol 22:
407–422, 1967
13. Zimmerman PV, Connellan SJ, Middleton HC, Tabona MV,
Goldman MD, Pride N: Postural changes in rib cage and abdo-
nominal volume–motion coefficients and their effect on the cal-
ibration of a respiratory inductance plethysmograph. Am
14. Reed DJC: A clinical method for assessing the ventilatory response
III. Static lung volumes and maximum voluntary ventilation in
adults with a note on physical fitness. Acta Med Scand 173:
199–206, 1963
16. Hugdell DW, Devadatta P: Decrease in functional residual capacity
during sleep in normal humans. J Appl Physiol 57:1319–1322,
1984
17. Don HF, Wahba M, Cuadrado L, Kelkar K: The effects of anes-
thesia and 100 per cent oxygen on the functional residual ca-
nacity of the lungs. ANESTHESIOLOGY 52:521–529, 1970
18. Prutow RJ, Dueck R, Davies NJH, Clausen JL: Shunt develop-
ment in young adult surgical patients due to inhalation anesthesia
(abstr). ANESTHESIOLOGY 57:A477, 1982
19. Hickey RF, Visick WD, Fairley HB, Fourcade HE: Effects of halo-
thane anesthesia on functional residual capacity and alveolar–
arterial oxygen tension difference. ANESTHESIOLOGY 38:20–
24, 1973
feedback facilitation of external intercostal and phrenic inspira-
tory activity by pulmonary stretch receptors. Acta Physiol
piratory apparatus on respiration. J Appl Physiol 57:475–480,
1984
22. Lauw PM, Stoeckel H, Schwilden H: Venous threshold concen-
trations of methohexital (abstr). ANESTHESIOLOGY 63:
A368, 1985
23. Hewlett AM, Humland GH, Nunn JF, Milledge JS: Functional re-
sidual capacity during anesthesia. III. Artificial ventilation. Br