Elastic Foamed Polymer Earplug as a Stethoscope Earpiece

To the Editor.—A precordial or esophageal stethoscope has been considered to be a fundamental monitor in pediatric anesthesia. A monaural earpiece is more comfortable than a binaural headpiece. However, unless custom-molded, the earpiece is often not used during a long operation because of discomfort.

I have found that an elastic foamed polymer earplug (Ear Whisper™, Cabot Corporation) and a disposable iv extension tube made a very comfortable earpiece, even for a long use.

The earplug is cut short, and a male adapter of an iv extension tube is inserted into the plug (fig. 1). The plug earpiece is compressed and inserted into the auditory canal, then the earplug expands slowly in the canal and seals the space.

Since the introduction of the elastic foamed polymer earplug-earpiece, no residents have complained about discomfort of the ear.

MASAO YAMASHITA, M.D.
Anesthetist-in-Chief

Ibaraki Children's Hospital
Mito, 311-41, Japan
(Accepted for publication November 17, 1986)

N₂O Has No Place During Oropharyngeal and Laryngotracehal Procedures

To the Editor.—We read with interest the clinical report entitled “Endotracheal Tube Fire Ignited by Pharyngeal Electrocautery,” by Simpson and Wolf,¹ and we agree with their concern regarding the use of intraoral or pharyngeal electrocautery. However, we feel they missed an important opportunity to warn others and emphasize the danger when using electrocautery or laser with N₂O/O₂ combinations during upper airway procedures. Although the beneficial effect of decreasing the O₂ concentration in N₂ has not been studied in a controlled fashion with electrocautery, we feel the specific energy ignition source (electrocautery or laser) is of secondary importance to the avoidance of N₂O and the use of a low O₂ percentage in N₂.

El-Baz et al.,² investigating catheter ignition by laser during the use of O₂-N₂ and O₂-N₂O mixtures, noted the critical O₂ concentration in N₂ which avoided PVC tube ignition by laser to be an FIO₂ of 30%. Although the use of O₂ concentrations above the critical level of 30% may be required to provide adequate oxygenation in patients with coincident pulmonary disease, the majority of those presenting for elective airway procedures should tolerate 25–30% O₂ in N₂. Whether individual clinicians use cuffed endotracheal tubes in children or not, or avoid the
use of electrocautery in close proximity to PVC endotra-
cheal tubes, as suggested by Simpson and Wolf, we feel the
use of N₂O and O₂ during anesthesia for intraoral, pha-
ryngeal, or laryngotraheal procedures should be avoided
completely in favor of air or air-oxygen mixtures.

JEFFREY D. SHAPIRO, M.D.
Chief Resident,
Pillsbury Fellow in Anesthesiology

NABIL M. EL-BAZ, M.D.
Associate Professor of Anesthesiology

In Reply.—We agree with Shapiro and El-Baz that “the
use of N₂O and O₂ during anesthesia for intraoral, pha-
ryngeal, or laryngotraheal procedures should be avoided
completely in favor of air or air-oxygen mixtures” only
with the proviso that electrocautery and/or laser is
required for surgery. Certainly, the combination of a fuel
(endotraheal tube), an oxidant (oxygen and/or nitrous
oxide), and an ignition source (electrocautery or laser)
has the potential for fire. When any one of the triad is
missing, however, fire is unlikely.

Joseph I. Simpson, M.D.
Assistant Instructor

Gerald L. Wolf, M.D.
Professor and Regional Vice Chairman

Department of Anesthesiology
Rush-Presbyterian-St. Luke’s Medical Center
1753 West Congress Parkway
Chicago, Illinois 60612

References
1. Simpson JJ, Wolf GL: Endotracheal tube fire ignited by pharyngeal
electrocautery. ANESTHESIOLOGY 65:76–77, 1986
2. El-Baz NM, Caldarelli DD, Faber LP, Hollinger LD, Ivankovich
AD: High frequency ventilation through a small catheter for
laser surgery of laryngotraheal and bronchial disorders. Ann
Otol Rhinol Laryngol 94:483–488, 1985
(Accepted for publication November 18, 1986.)

Anesthesiology
66:448, 1987

Malignant Hyperthermia: Are We Really Prepared?

To the Editor.—Malignant Hyperthermia remains a
formidable challenge to anesthesiologists. As with so many
other nightmarish situations in medicine, being prepared
is the key to successful management. Dantrolene, the drug
of choice, when used appropriately,¹ has contributed to
the reduction in mortality from 90% to about 10%. Since
dantrolene is an emergency drug, experts agree that it
should be immediately available at all anesthetizing loca-
ations. That means, in most cases, in the operating
room.²–⁵

Recently, we conducted an informal telephone survey
of all hospitals and surgical centers in Dallas, Texas, as
listed in the Parkland Memorial Hospital telephone di-
rectory. Twenty-three institutions at which surgical pro-
cedures under general anesthesia are performed were
polled. All major hospitals had dantrolene available within
the operating room.

However, four of 23 surgical locations had no dantro-
lene available in the hospital. One further institution
stored dantrolene in the pharmacy, but not in the oper-
ating room.

We are of the opinion that, in the management of a
malignant hyperthermia crisis, every minute counts.
Storing dantrolene in the operating room should be as
mandatory as storing, for example, epinephrine and other
resuscitation drugs and devices.

Anesthesiologists should not rest until mortality from
malignant hyperthermia is completely erased. To reach
that goal, we need to be prepared, wherever we practice.

H. A. Tillmann Hein, M.D.
Assistant Professor

Norbert Roewer, M.D.
Visiting Professor

Jan-Peter A. H. Jantzen, M.D.
Assistant Professor

Department of Anesthesiology
The University of Texas Southwestern Medical School
5323 Harry Hines Boulevard
Dallas, Texas 75235-9068

J. C. McKinley, M.D.
Visiting Professor

Anesthesiology