Management of Cuff Incompetence in an Endotracheal Tube

To the Editor.—Maintaining a patent airway is of primary importance during anesthesia, especially in surgical procedures on the head and neck (e.g., craniotomy) where replacing a defective tube (with a new one) is hardly feasible. We experienced trouble when the cuff of an endotracheal tube (AIR-CUF®) started to leak in the midst of removal of a large meningioma in a 67-yr-old female patient. Since we checked our cuff before intubating and we had a functional cuff before draping, we assume that a microperforation may have occurred, caused by the patient's teeth or the Magill forceps while intubating. Initial signs of cuff incompetence may have been hidden by secretions, while the increased N₂O pressure in the cuff later during the intervention may have distended it and made the perforation apparent. Maintaining normal ventilation in such cases is extremely difficult, since higher inspiratory flows are needed, resulting in higher airway pressures and, thus, higher intracranial pressure. Keeping the cuff inflated by injection of small volumes of air is a solution, but can hardly be kept up for several hours. A more comfortable and safe technique is one that inflates the cuff at a constant rate, by means of simple devices present in the operating theatre. We assembled a rotameter (Dräger, Lübeck, Germany), which delivered an arbitrary flow of oxygen, with a green flexible oxygen tube (Argyle®, Sherwood Medical) and a three-way infusion valve (Connecta®, Viggo Helsingborg, Sweden), leaving one way open to the air (fig. 1), and connected it to the air-inlet of the cuff. A constant flow of oxygen in this system exerts a certain pressure, which is flow dependent, in the cuff, and keeps it inflated. Pressure values in a microperforated PORTEX tube in vitro reached 3–4 mmHg with a flow of 1 l/min, 6–7 mmHg with a flow of 3 l/min, and 10–11 mmHg with a flow of 5 l/min. In practice, flow is adjusted until an adequate tidal volume is returned to the spirometer. The system lasted until the end of the surgical procedure. A similar, but more intricate, system has been described before.¹ In our system, there are two precautions to be taken, First, the patient should be adequately relaxed to keep intrathoracic pressures as low as possible; and second, the system should be open to air; if not, dangerous intraballoon pressures will result in cuff rupture. This method does not work for large perforations of the cuff.

C. VERBORGH
Resident in Anesthesiology

F. CAMU
Professor and Head, Department of Anesthesiology

Department of Anesthesiology
Academisch Ziekenhuis
Free University of Brussels
Brussels, Belgium

REFERENCE


(Accepted for publication November 5, 1986.)

Ranitidine Prophylaxis in Outpatients

To the Editor.—The article by Manchikanti et al.¹ has several strengths. With the implementation of both randomization in the selection of groups and the use of a control, major biases which plague many studies, specifically selection bias, confounding bias, and chance, are eliminated. The paper does not, however, mention whether or not this was a blind study. Therefore, intra- or inter-observer error may have played a part in mea-