The Effect of Isoflurane on Cerebral Blood Flow and Metabolism in Humans during Craniotomy for Small Supratentorial Cerebral Tumors

Jørn Bo Madsen, M.D.,* Georg Emil Cold, M.D.,† Ebbe Stefan Hansen, M.D.,* Benny Berdrom, M.D.‡

Fourteen patients were studied during craniotomy for small supratentorial cerebral tumors. Cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO₂) were measured twice by a modification of the Kety-Schmidt technique using 133Xe intravenously. Anesthesia was induced with thiopental 5–7 mg·kg⁻¹, fentanyl 0.2 mg, and pancuronium, and maintained with 0.75% inspired isoflurane concentration in 67% nitrous oxide, and moderate hypocapnia. In one group of patients (n = 7), the inspired isoflurane concentration was maintained at 0.75% throughout anesthesia. One hour after induction of anesthesia, CBF and CMRO₂ averaged 31 ± 3 ml·100 g⁻¹·min⁻¹ and 2.1 ± 0.2 ml O₂·100 g⁻¹·min⁻¹ (X ± SEM), respectively. During repeat studies 1 h later, CBF and CMRO₂ were unchanged. In a second group of patients (n = 7), an increase in the inspired isoflurane concentration from 0.75% to 1.5% was associated with a significant decrease in CMRO₂ from 24 ± 0.1 to 19 ± 0.1 ml O₂·100 g⁻¹·min⁻¹, and no change in CBF. It is evident that this anesthetic regimen is safe to use in patients with small supratentorial tumors in whom only a small midline shift has occurred. (Key words: Anesthesia: neurosurgical. Anesthetics, volatile: isoflurane. Brain: blood flow; metabolism.)

THE EFFECT OF ISOFLURANE on cerebral hemodynamics and metabolism has been studied extensively in animals.¹⁻⁴ Isoflurane causes a dose-dependent increase in CBF due to cerebral vasodilatation⁶⁻⁸ and a decrease in CMRO₂.¹⁻⁴ However, compared to halothane, isoflurane is less of a cerebral vasodilator, and the decrease in CMRO₂ and the suppression of the cerebral electrical activity (EEG) are more pronounced.¹⁻⁶

Only a few studies concerning the effect of isoflurane on CBF in patients undergoing craniotomy have been published. One study of the effects of halothane, enflurane, and isoflurane on regional CBF² confirmed the results of animal experiments, that the increase in CBF was less pronounced during isoflurane anesthesia.⁴

However, no studies concerning both global CBF and CMRO₂ measured during craniotomy have been published. For that reason, we found it of interest to measure CBF and metabolism during isoflurane anesthesia, suppleiciated with 67% nitrous oxide in patients undergoing craniotomy for small supratentorial cerebral tumors.

Materials and Methods

Patients

CBF and CMRO₂ were measured in 14 patients with supratentorial cerebral tumors. Mean age of the patients was 57 yr (range 22–75 yr) and mean weight 70.5 kg (range 50–94 kg). The patients gave informed consent, and the study was approved by the scientific committee of Copenhagen City, and was in accordance with the Helsinki II declaration. Preoperatively, all the patients were awake, and, during 3–7 days before surgery, methylprednisolone in a daily dose of 160 mg was given orally. Patients with a shift of midline structure > 15 mm estimated by CT scanning, and those being treated for heart disease, hypertension or chronic pulmonary diseases, were excluded from the study. The age of the patients and the localization, size, and histological diagnosis of the tumors, together with the midline shift, are shown in table 1.

Anesthesia

One hour before induction of anesthesia, the patients were premedicated with pentobarbital 100–150 mg i.m. After preoxygenation, anesthesia was induced with thiopental 5–7 mg·kg⁻¹, fentanyl 0.1 mg, and pancuronium 0.15 mg·kg⁻¹. The patients were manually hyperventilated until total paralysis. Approximately 1 min before tracheal intubation, lidocaine 1.5 mg·kg⁻¹ iv was given. Following tracheal intubation, anesthesia was maintained with isoflurane 0.75% and nitrous oxide 67% in oxygen supplemented with fentanyl 0.1–0.2 mg and pancuronium sufficient to provide total paralysis estimated by train-of-four stimulation.

Throughout anesthesia, the patients were ventilated by a Servo® 900 B ventilator (Siemens-Elema, Sweden), and moderate hypocarbia of approximately 30 mm Hg was achieved and monitored with arterial gas analyses (ABL-1®, Radiometer, Denmark). The Pao₂ was maintained >100 mm Hg. Mean arterial blood pressure (MABP) was recorded with the transducer technique (Servogor 330®, BBC Goerz, Austria). Rectal temperature

* Resident, Department of Anesthesia.
† Chief Anesthetist, Department of Anesthesia.
‡ Resident, Department of Neurosurgery.
Received from Department of Anesthesia and Department of Neurosurgery, Hvidovre Hospital, University of Copenhagen, DK-2650 Hvidovre, Denmark. Accepted for publication October 20, 1986.
Address reprint requests to Dr. Madsen: Department of Anesthesia, Hvidovre Hospital, Kettegaardens Alle 30, DK-2650 Hvidovre, Denmark.
was measured continuously. The patients were divided into two groups. In group 1 (n = 7), the inspiratory isoflurane concentration remained at 0.75% throughout the anesthesia, and two CBF measurements were performed. In group 2 (n = 7), the isoflurane concentration was increased from 0.75% to 1.5% immediately after the first CBF measurement and the flow measurement was repeated.

Measurement of CBF and CMRO₂

After induction of anesthesia, the internal jugular vein contralateral to the side of the tumor was punctured, and a catheter advanced until its tip, confirmed by x-ray, was placed at the base of the skull. CBF was measured using ¹³³Xenon. The brain was saturated during a 20-min period with ¹³³Xenon using a continuous intravenous infusion at a constant rate. Three mCi dissolved in 25 ml of saline were used. Blood samples of 2 ml were withdrawn from the arterial and the jugular venous catheter at 16, 18, and 20 min during the saturation period, and at 1, 2, 3, 4, 5, 7, 9, 11, 13, 15, 18, 20, 25, and 30 min during the desaturation period. The radioactive xenon was vented through the central suction. The sample radioactivity was counted in a well counter (Palle Medicotechnic, Denmark). Average blood flow through the brain during the desaturation period, CBF₉₀, was calculated by the height-over-area formula of Kety-Schmidt,⁸ using a xenon blood-brain partition coefficient of 1.1. This method has previously been reported.⁹,¹⁰

CMRO₂ was calculated from the product of CBF and the arteriovenous oxygen difference (AVDO₂).

The oxygen content in arterial and jugular venous blood was calculated from the formula: oxygen content = 1.39·hemoglobin (g·100 g⁻¹)·% saturation (a-v) O₂ + 0.03·PaO₂ (mmHg). Oxygen saturation was determined photometrically (Hemoximeter B⁶, OSM-2, Radiometer, Denmark), PaO₂ (ABL-1⁸, Radiometer, Denmark) and hemoglobin concentration was measured directly (Hemalog ⁷, Technicon Autoanalyser). The first CBF measurement in group 1 and 2 was performed 67 ± 8 min and 73 ± 6 min, respectively, after induction of anesthesia, and about 15 min before surgery was started. The second flow measurement in the two groups was performed 60 min later. Before the second flow measurement in group 2, the inspired isoflurane concentration was kept constant at 1.5% for 30 min.

The cerebrovascular reactivity to changes in PacO₂ was tested by further hyperventilation following the second flow measurement. The change in CBF was measured indirectly. Assuming that CMRO₂ is constant during the hyperventilation period, CBF is inversely proportional to AVDO₂.¹¹,¹² PacO₂ and AVDO₂ were measured before and 5 min after hyperventilation, and the percentage change in AVDO₂ was calculated and expressed as percentage change in CBF. The relative CBF response to hyperventilation was defined as percent CBF change per mmHg of Δ PacO₂.¹³,¹⁴

The results in text and tables are expressed as mean ± standard error of mean (SEM). Comparisons between the values were performed using Student’s t test for paired and unpaired data when appropriate. Initial CBF and CMRO₂ values were compared with the degree of midline shift of the tumor and the size of the tumor, respectively.
using linear correlation analysis. A P value less than 0.05 was considered significant.

Results

CBF, CMRO$_2$, AND MABP

No statistically significant differences with respect to age, weight, and degree of midline shift of the tumors were found. The area of the tumors was significantly larger in group 2 patients (table 1).

During the first CBF measurement in group 1 and 2, where anesthesia was maintained with 0.75% isoflurane, CBF averaged 31 ± 3 and 35 ± 2 ml·100 g$^{-1}$·min$^{-1}$, respectively (n.s.) During repeat studies 1 h later, CBF did not change significantly from these values (table 2). During the first flow measurement in the two groups, CMRO$_2$ averaged 2.1 ± 0.2 and 2.4 ± 0.1 ml O$_2$·100 g$^{-1}$·min$^{-1}$, respectively (n.s.). In group 1, CMRO$_2$ was unchanged by repeat studies 1 h later (n.s.). In group 2, increasing isoflurane inspired concentration was associated with a significant decrease in CMRO$_2$ to 1.9 ± 0.1 ml O$_2$·100 g$^{-1}$·min$^{-1}$ ($P < 0.05$) (table 2).

The change in isoflurane concentration from 0.75% to 1.5% was associated with a significant decrease in MABP from 84 ± 4 to 67 ± 6 mmHg ($P < 0.05$). Furthermore, in both groups, a significant decrease in body temperature was observed ($P < 0.05$).

Initial CBF and CMRO$_2$ values were correlated to the degree of midline shift and to the size of the tumor; no statistically significant correlation was found.

The relative CBF response to hyperventilation averaged 4.4 ± 1.0%·mmHg$^{-1}$ in group 1 patients, compared with 5.1 ± 0.9%·mmHg$^{-1}$ in group 2 (n.s.) (table 3).

Discussion

Cerebral blood flow was measured using an intravenous modification of the classical inhalation method described by Kety and Schmidt. The validity of this technique for CBF measurement has recently been tested in awake patients with supratentorial cerebral tumors; CBF and CMRO$_2$ averaged 47 ml·100 g$^{-1}$·min$^{-1}$ and 3.3 ml O$_2$·100 g$^{-1}$·min$^{-1}$, respectively. These values correspond to values found in normal man, and argue against a major influence of the tumor on CBF. Furthermore, this technique has produced reliable results in repeated CBF studies with electrodes or tomograms. CBF measured with this method represents global flow, because venous blood flow from each hemisphere is mixed in the confluence of the venous sinuses. Some methodological errors might occur from contamination by external jugular venous blood and by central venous blood. Regional flow differences have been observed in patients with cerebral tumors, but the effect of the tumor on global flow is still not evident. In addition, in this study, flow measurements were performed in patients with small supratentorial cerebral tumors without a large midline shift. Furthermore, all the patients were alert preoperatively, and in good physical state.

In the present study, it is presumed that steady-state conditions were obtained during the 30-min desaturation period. This assumption was fulfilled as far as Pa$_{aCO_2}$ is concerned; however, arterial pressure did increase in relation to the operative procedure, especially at the time of incision of the skin. In order to avoid this influence, surgical stimulation during the first 15 min of the desaturation period was avoided. This precaution would also prevent augmentation of CMRO$_2$, which, according to Kuramoto et al., occurs during noxious stimulation in dogs. The second CBF measurement was performed during the evacuation of the tumor. At this time, noci-

Table 2. Effect of Isoflurane on Blood Pressure, CBF, and CMRO$_2$

<table>
<thead>
<tr>
<th></th>
<th>Inspired Isoflurane Conc. %</th>
<th>Body Temp. (°C)</th>
<th>P$_{aCO_2}$ (mmHg)</th>
<th>Mean Arterial Blood Pressure (mmHg)</th>
<th>CBF (ml·100 g$^{-1}$·min$^{-1}$)</th>
<th>CMRO$_2$ (ml O$_2$·100 g$^{-1}$·min$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1 (n = 7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow 1</td>
<td>0.75</td>
<td>35.7 ± 0.2</td>
<td>31 ± 2</td>
<td>73 ± 5</td>
<td>31 ± 3</td>
<td>2.1 ± 0.2</td>
</tr>
<tr>
<td>Flow 2</td>
<td>0.75</td>
<td>35.1 ± 0.2*</td>
<td>29 ± 1</td>
<td>66 ± 5</td>
<td>29 ± 3</td>
<td>2.0 ± 0.2</td>
</tr>
<tr>
<td>Group 2 (n = 7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow 1</td>
<td>0.75</td>
<td>35.7 ± 0.2</td>
<td>31 ± 2</td>
<td>82 ± 4</td>
<td>35 ± 2</td>
<td>2.4 ± 0.1</td>
</tr>
<tr>
<td>Flow 2</td>
<td>1.5</td>
<td>35.4 ± 0.2*</td>
<td>30 ± 2</td>
<td>67 ± 6*</td>
<td>33 ± 4</td>
<td>1.9 ± 0.1*</td>
</tr>
</tbody>
</table>

* Statistical difference within the groups ($P < 0.05$). No statistical differences were found between the groups.

Table 3. Relative CBF Response to Hyperventilation Defined as Percent CBF Change per mmHg of ΔP$_{aCO_2}$ in the Two Groups

<table>
<thead>
<tr>
<th></th>
<th>∆P$_{aCO_2}$ (mmHg)</th>
<th>Relative Reactivity (% ΔCBF/ΔP$_{aCO_2}$) (mmHg$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>6 ± 1</td>
<td>4.4 ± 1.0</td>
</tr>
<tr>
<td>Group 2</td>
<td>4 ± 1</td>
<td>5.1 ± 0.9</td>
</tr>
</tbody>
</table>

Mean ± SEM. No statistical difference was found between the values in the two groups.
CBF AND CMRO$_2$ DURING ISOFLURANE ANESTHESIA

ceptive stimulation induced by the surgery is of minor importance.

A dose-dependent decrease in MABP was observed in the present study. This observation was in accordance with others. Hypotensive episodes were observed, especially during the period just before the start of the operative procedure. Infusions of lactated Ringer solution 1.5–2.0 l over a 20-min period before surgical stimulation was necessary to prevent severe hypotension. In one patient, MABP failed to increase after skin incision, and phentylephrine 7.5 mg iv was administered because of decrease in MABP below 55 mmHg.

Halothane dilates cerebral vessels and increases CBF and intracranial pressure. Thus, a dangerous decrease in cerebral perfusion pressure may occur. In contrast, the effect of isoflurane on CBF is less pronounced, as shown in animal experiments as well as in human studies. These observations were confirmed in a recent human study of perioperative rCBF during craniotomy for cerebral tumors. In this study, CBF did not increase after increasing isoflurane concentration. This is in contrast to other studies in animals and humans, where isoflurane induced a dose-dependent decrease in cerebral resistance associated with an increase in CBF. The difference might be explained by the fact that the cerebral vasodilatation is counteracted by the decrease in MABP; however, this assumption indicates that autoregulation was lost during the second flow measurement using 1.5% isoflurane. This mechanism, although not proven because cerebrovascular resistance or autoregulation was not tested, may be a reasonable explanation because the level of MABP was close to the lower level of autoregulation. Furthermore, it has been shown in animal experiments that cerebral autoregulation was impaired during higher concentrations of isoflurane.

In a study similar to this, anesthesia was maintained with 1% isoflurane in oxygen-air mixture in patients subjected to surgery for cerebral aneurysms during isoflurane-induced hypotension; global CBF and CMRO$_2$ averaged 49 ml·100 g$^{-1}$·min$^{-1}$ and 2.0 ml O$_2$·100 g$^{-1}$·min$^{-1}$, respectively. Compared with the present study, CBF was higher, while identical values of CMRO$_2$ were found. The higher CBF values might have been caused by the higher isoflurane concentration and by the use of mannitol before induction of anesthesia. The low normal values of CBF observed in this study may be due to the hyperventilation. Furthermore, the lowered body temperature may also decrease metabolism, resulting in a further decrease in the CBF values. The significant decrease in CMRO$_2$ observed in group 2 patients in this study is not assumed to be secondary by the decrease in temperature alone, as the fall in temperature is larger in group 1 patients.

During the flow measurements, a rather high concentration of nitrous oxide was used, which might influence CBF and metabolism. Although 70% nitrous oxide has a modest action on CBF and CMRO$_2$, it seems that there is a synergistic effect when nitrous oxide is used with halothane or with isoflurane, but a decrease of CBF when nitrous oxide is administered in association with an intravenous agent as diazepam. In this study, intravenous agents as fentanyl and barbiturate were used together with isoflurane; therefore, it is difficult to define exactly to which extent nitrous oxide influenced CBF and metabolism.

In the present study, a dose-related decrease in CMRO$_2$ was observed, which is in agreement with animal and human studies. The level of CMRO$_2$ in this study was comparable to results obtained in a recent study of continuous infusion of etomidate 60 µg·kg$^{-1}$·min$^{-1}$ (1.8 ± 0.2 ml O$_2$·100 g$^{-1}$·min$^{-1}$), but higher than the values obtained during continuous infusion of thiopental 0.5 ml·kg$^{-1}$·h$^{-1}$ (1.5 ± 0.1 ml O$_2$·100 g$^{-1}$·min$^{-1}$) and during 0.5% halothane supplemented with thiopental 8 mg·kg$^{-1}$·h$^{-1}$ (1.6 ± 0.2 ml O$_2$·100 g$^{-1}$·min$^{-1}$).

It is concluded that isoflurane supplemented with N$_2$O during moderate hypocapnia is a reasonable choice in patients subjected to craniotomy for chronic small space-occupying lesions. During this combined anesthesia, an associated decrease in CBF and CMRO$_2$ has been found. CBF is maintained in spite of a dose-related decrease in MABP. Whether this is due to an intact autoregulation without a cerebral vasodilatation induced by isoflurane, or as a result of an impaired autoregulation where the decrease in MABP is counteracted by an isoflurane-induced cerebral vasodilatation, cannot be answered in this study, because cerebrovascular resistance and autoregulation were not tested.

References

1. Newberg LA, Milde JH, Michenfelder JD: The cerebral metabolic effects of isoflurane at and above concentrations that suppress cortical electrical activity. ANESTHESIOLOGY 59:23–26, 1983
5. Cuccinella RF, Theye RA, Michenfelder JD: The effects of isoflu-
ranate in canine cerebral metabolism and blood flow. ANESTHE-
sIOLOGY 40:571–574, 1974

6. Eger EI, Stevens WC, Cromwell TH: The electroencephalogram in
man anesthetized with enflurane. ANESTHESIOLOGY 55:504–508, 1971

7. Eintrei C, Leniewski W, Carlsson C: Local application of 133Xenon
for measurement of global cerebral blood flow (CBF) during halothane, enflurane and isoflurane anesthesia in humans. ANESTHESIOLOGY 53:391–394, 1985

8. Key SS, Schmidt CF: The nitrous oxide method for the quanti-
tative determination of cerebral blood flow in man: theory,

9. Astrup J, Rosenørn J, Cold GE, Bendtsen A, Møller Sørensen P:
Minimum cerebral blood flow and metabolism during crani-
28:478–481, 1984

Lyon B, Cold GE: Use of a continuous infusion of althesin in

11. Michenfelder JD, Theye RA: The effects of profound hypocapnia and
dilutional anemia on canine cerebral metabolism and blood

12. McHenry LC, Slocum HC, Bivens HE, Mayes HA, Hayer GJ:
Hyperventilation in awake and anesthetized man. Arch Neurol
12:270–277, 1965

13. Ackerman RH: The relationship of regional cerebrovascular CO2
reactivity to blood pressure and regional resting flow. Stroke
4:725–731, 1973

14. Obrist WD, Langfitt TW, Jaggi JL, Cruz J, Gennarelli TA: Cere-
bral blood flow and metabolism in comatose patients with

15. Cold GE, Eksensen V, Eriksen H, Amtoft O, Madsen JB: CBF and
CMRO2 during continuous etomidate infusion supplemented
with N2O and fentanyl in patients with supratentorial cerebral
490–494, 1985

16. Lassen NA, Lane MH: Validity of internal jugular blood for study
316, 1961

18. Palvögyi R: Regional cerebral blood flow in patients with intrac-

19. Kuramoto T, Oshita S, Takeshita H, Ishikawa T: Modification of
the relationship between cerebral metabolism, blood flow and
electroencephalogram by stimulation during anesthesia in the
dog. ANESTHESIOLOGY 51:211–217, 1979

20. Stevens WC, Cromwell TH, Halsey MJ, Eger EI, Shakespeare TF,
Bahlman SH: The cardiovascular effects of a new inhalation
anesthetic, forane in human volunteers at constant arterial car-
dioxide tension. ANESTHESIOLOGY 38:8–16, 1971

21. Shinomoto S, Carter JG, Kemmotsu O, Takahashi T: Cardio-cir-
culatory effects of prolonged administration of isoflurane in
normocarbin human volunteers. Acta Anaesthesiol Scand
26:27–30, 1982

22. Jennett WB, Barker J, Fitch W, McDowall DG: Effects of anae-
sthesia on intracranial pressure in patients with space-occupying

23. Van Aken H, Fitch W, Brüssel T, Graham DI: The influence of
isoflurane-induced hypotension on cerebral blood flow and cere-
bral autoregulation in baboons (Abstract). ANESTHESIOLOGY
63:A394, 1985

hypotension on cerebral blood flow and cerebral metabolic
rate for oxygen in humans. ANESTHESIOLOGY 64:307–310, 1986

25. Smith AL, Wollman H: Cerebral blood flow and metabolism: Ef-
400, 1972

26. Sakabe T, Kuramoto T, Kumagae S, Takeshita H: Cerebral re-
sponses to the addition of nitrous oxide to halothane in man.

27. Drummond JC, Scheller MS, Todd MM: The effect of nitrous
oxide on CBF during anesthesia with isoflurane, halothane,
and halothane/morphone (Abstract). ANESTHESIOLOGY 63:
A408, 1985

28. Carlsson G, Hägerdal M, Kaaski AE, Siejko BK: The effects of
diazepam on cerebral blood flow and oxygen consumption in
rats and its synergistic interaction with nitrous oxide. ANES-
THESIOLOGY 45:319–325, 1976

29. Homi J, Konchigeri NH, Eckenhoff JE, Linde HW: A new anes-
thetic agent: Forene preliminary observations in man. Anesth
Analg 51:439–477, 1972