Shoulder Supports Revisited

To the Editor—Although excessive abduction of the arm is the most frequent cause of a brachial plexus injury during anesthesia, some authors incriminate shoulder supports as well. The patient’s weight generates a pressure which is inversely proportional to the surface of the shoulder supports. The application of their counter-pressure on the inside of the acromion processes may pinch the brachial plexus between the clavicle and the first rib. On the other hand, lateral application of the supports over the humeral head may drive it into the axilla, with the consequent stretch of the brachial plexus. Non-slip mattresses have been devised to decrease the pressure from the shoulder supports, or even to preclude their use. However, these mattresses are not available everywhere.

We propose a simple and effective way to decrease the pressure of the shoulder supports (fig. 1). They are applied against a 50 cm long soft roll on which the patient’s head rests, with a resultant increase of the contract area between the patient and the support. The shoulder supports are easy to apply at any time, and their misplacement appears quite unlikely.

CHRISTIAN WATTIEZ, M.D.
Resident
PIERRE PARMENTIER, M.D.
Chairman
Department of Anesthesiology
Centre Hospitalier Universitaire de Tivoli
rue Max Buset 34
7100 La Louviere
Belgium

REFERENCES

(Accepted for publication January 16, 1987.)

A Potentially Lethal Anesthesia Machine Failure

To the Editor—We wish to alert readers who use anesthesia machines with linked oxygen and nitrous oxide flow control valves about a potentially lethal malfunction.

While performing a routine preanesthetic check of a 5-yr-old Ohio ModulusTM Anesthetic Gas Machine, we discovered that the nitrous oxide flow could be set from 0–121/min, without any corresponding change in oxygen flow. The oxygen and nitrous oxide flow control valves on this anesthesia machine are linked mechanically, so that the operator cannot set the FIO₂ below a preset min-