dysfunction, and hydrocephalus. One series of 60 patients11 cites only two patients with torticollis among 19 categories of preoperative neurologic findings. Congenital cerebellar herniation can be viewed as a type of extrinsic cervical cord "tumor." Seven pediatric patients with intrinsic cervical cord tumor discussed by Visudhiphan et al.4 and Kiwak et al.2 presented with torticollis.

The mechanism that promotes torticollis is unknown. Perhaps the spinal nerve that exits along C\textsubscript{1}–C\textsubscript{2}–C\textsubscript{3} nerve roots is irritated by compression, causing an imbalance of muscle tone to the sternocleidomastoid and trapezius muscles. In this patient, the hyperextended position of the atlanto-occipital junction during tonsillectomy probably accentuated the irritative compression and precipitated symptoms. Theoretically, a previously asymptomatic patient with ACM type I might suddenly manifest symptoms after whiplash injury.

In conclusion, acquired persistent torticollis is not necessarily a benign condition of muscle spasm. As this case illustrates, a thorough evaluation is indicated to uncover and treat the underlying disorder. Unrelated elective surgery probably should be postponed in a patient with persistent acquired torticollis pending a thorough neurologic examination. Sustained hyperextension of the neck under anesthesia, especially when muscle relaxants are used, may be hazardous to any patient who may be harboring a yet undiagnosed cervical instability or congenital anomaly.

REFERENCES

Anesthesiology
67:122–125, 1987

Histamine Release by Vancomycin: A Mechanism for Hypotension in Man

Jerrold H. Levy, M.D.,* Nancy Kettlekamp, B.A.,† Peter Goertz, M.D.,‡ Jeanne Hermens, M.D.,‡ Carol A. Hirshman, M.D.§

Vancomycin, a glycopeptide antibiotic, produces hypotension and flushing during rapid administration in individuals without previous exposure.1,2 Primary myocardial depression has been suggested as the mechanism responsible for the hypotension.3,4 However, in this report, we found elevated plasma histamine levels in two patients who became hypotensive following vancomycin administration, and histamine release by vancomycin in dispersed human cutaneous mast cells. We now believe that nonimmunologic histamine release by vancomycin, not the vancomycin per se, is the mechanism responsible

* Assistant Professor of Anesthesiology, Emory University School of Medicine.
† Research Assistant, Oregon Health Sciences University School of Medicine.
‡ Resident in Anesthesiology, Oregon Health Sciences University School of Medicine.
§ Professor of Anesthesiology and Pharmacology, Oregon Health Sciences University School of Medicine.

Received from the Division of Cardiothoracic Anesthesia, Emory Clinic, Department of Anesthesiology, Emory University School of Medicine; and the Department of Anesthesiology, Oregon Health Sciences University School of Medicine. Accepted for publication January 30, 1987.

Address reprint requests to Dr. Levy: Department of Anesthesiology, Emory University Hospital, 1364 Clifton Road NE, Atlanta, Georgia 30322.

Key words: Complications: hypotension. Histamine. Pharmacology: vancomycin.
for hypotension following rapid vancomycin administration.

REPORT OF TWO CASES

A 61-year-old man with a history of penicillin allergy and exertional angina was scheduled for a thoracotomy for left upper lobe resection of a squamous cell carcinoma. Preoperative monitors included radial and pulmonary artery catheters, lead II and V5 electrocardiogram. Prior to induction of anesthesia, 50 mg of vancomycin was accidentally administered as a rapid iv bolus. Arterial blood pressure precipitously decreased to 68/35 mmHg, cardiac output increased to 4.4 l/min, the calculated systemic vascular resistance decreased to 450 dyne•sec•cm⁻², and the calculated stroke volume increased to 56 ml/beat (fig. 1). Ephedrine, 5 mg, was given iv, and arterial blood pressure rapidly returned to baseline values. Blood samples were obtained in sodium heparin syringes at 1, 2, 3, and 5 min after the initial vancomycin bolus and placed immediately on ice for histamine determination. The plasma histamine concentration during the initial hypotensive episode (1 min) was 2.4 ng/ml.

A 57-year-old woman was admitted for a right carotid endarterectomy. Past medical history included a prior myocardial infarction, a tobacco and penicillin allergy, and hives following renograin. An arterial cannula was inserted, and anesthesia was induced with 300 mg thiopental, 0.5 mg pancuronium, and 100 mg succinylcholine iv. The trachea was easily intubated and anesthesia was maintained with isoflurane 1% and 60% nitrous oxide. The systolic arterial blood pressure was 110 mmHg, and 1 gm of vancomycin and 80 mg of tobramycin were administered iv over 10 min. Slight wheezing was noted 5 min later with a simultaneous decrease in arterial blood pressure to 90 mmHg systolic. EKG showed multifocal PVCs. Blood was drawn for histamine determination, anesthetic agents were discontinued, and ventilation was controlled with a FiO₂ of 1.0. The patient was placed in the Trendelenburg position, and 100 mg of lidocaine and three 10-mg boluses of ephedrine were administered iv. EKG returned to normal sinus rhythm, but the arterial blood pressure slowly returned to 110/60 mmHg after 30 min following phenylephrine and dopamine iv infusions and 3 l of lactated Ringer’s solution administration. The trachea was extubated, and the patient was transferred to the intensive care unit where a dopamine infusion and iv crystalloid administration were required over the next 24 h to maintain a normal arterial blood pressure and urine output. The lungs were clear, but upper body angioedema required 3 days to resolve. The patient fully recovered and underwent carotid endarterectomy 7 days later without complication in the absence of antibiotic administration. The blood sample obtained during the initial hypotension revealed a histamine level of 20 ng/ml.

IN VITRO STUDIES

Sixteen foreskin tissue samples were collected from local hospitals in Dulbecco’s modified eagle medium (Gibco Laboratories, Grand Island, NY), supplemented with 1% antibiotic-antimycotic solution (Gibco Laboratories).

The subcutaneous fat was excised and the tissue chopped finely with a razor blade. The cells were dispersed according to the method of Benyon et al.5 The tissue was incubated in a solution of 1.5 mg/ml collagenase (Sigma, St. Louis, MO) in 2.8 mm Ca²⁺-Hank’s balanced salt solution (BSS) at 37° C with mechanical agitation for 2 h. The solution was filtered through a double layer of surgical gauze. The solution containing the dispersed cells was centrifuged at 300 x g for 10 min. The cells were resuspended in 10 ml of Hanks-BSS-CMF and refrigerated 12–18 h. The cells were washed twice with Hanks-BSS.

The total cells recovered were resuspended in 1.0 ml BSS, to which was added 2.8 mM Ca²⁺. Cell numbers were determined on a Coulter Counter (Coulter Electronics, Hialeah, FL). Two hundred µl aliquots of cell suspension at 10 million cells/ml (i.e., 2 x 10⁶ cells) were incubated in buffer alone for 30 min to determine spontaneous release. An equal number of cells from the same pool were incubated in buffer, to which was added
In the cells incubated with vancomycin, histamine release increased to 22.9 ± 2.3% ($P < .025$).

Discussion

Vancomycin, the only glycopeptide antibiotic in clinical use, often produces hypotension and flushing following administration in man. Administration of 1 gm of vancomycin in 10 ml of crystalloid over 10 min was associated with a 25–50% decrease in systolic arterial blood pressure lasting 2–3 min in 11/56 patients. In patients receiving the drug over 30 min, hypotension was not observed.

Cohen et al. demonstrated dose-related depression of left ventricular dp/dt, right ventricular contractile force, and mean arterial blood pressure in two dogs receiving vancomycin and in the Langendorff cat heart preparation. In addition, they demonstrated decreased vascular resistance in the isolated dog hind limb preparation after intra-arterial injection of vancomycin. Histamine levels were not measured from either the plasma of the intact dogs or from the effluent of the isolated cat heart. Our study extends this work by suggesting that histamine release by vancomycin can explain their results. Although drug-induced histamine release initially causes increases in cardiac contractility, this effect is rapidly followed by a venodilatation, a sudden decrease in left ventricular filling, and decreased contractility.

Histamine produces hypotension in man by directly dilating peripheral blood vessels.

We demonstrated histamine release in two patients following vancomycin-related hypotension. In addition, we observed increased cardiac output, increased stroke volume, and decreased systemic vascular resistance in one of these patients (fig. 1) in association with flushing. Histamine, when infused to volunteers, produces flushing, increased cardiac output, increased stroke volume, and decreased systemic vascular resistance. We also demonstrated histamine release from isolated human cutaneous mast cells following the addition of vancomycin at a concentration very close to that seen in the vascular system as the drug is being given.

Our data suggest that direct histamine release occurs following vancomycin administration. We believe histamine release probably represents the mechanism responsible for hypotension following vancomycin administration in man.

References

Histamine was measured in the plasma of the two patients using the single isotope radioenzyme assay of Faraj, or using the double isotope radioenzyme assay of Shaff and Bevin and in the in vitro studies by the automated fluorometric method of Siraganian.

Results

Spontaneous histamine release averaged 12.9 ± 1.0% (mean ± SEM) in the dispersed human skin cells (fig. 2).
Assessing the Level of Spinal Anesthesia Using a Neuromuscular Stimulator

RONALD M. MEYER, M.D.,* WILLIAM J. MCCUNE, M.D.†

The response to pinprick is commonly used for defining the area of anesthesia achieved by a subarachnoid block (SAB). Unfortunately, there are patients who might benefit from the safety of SAB anesthetic, but are noncommunicative, making it difficult to determine accurately the level of SAB without causing trauma from vigorous needle punctures.

During 2 yr of providing anesthesia for a general hospital with a large group of nursing home patients, we have routinely used a hand-held neuromuscular stimulator (NMS) to test the level of SAB. The stimulator has been designed to pass a short burst of current through the skin to stimulate motor nerve fibers and activate the neuromuscular junction. The device also produces the sensation of a mild electric shock at the site of application.

A prospective, non-blinded, non-randomized study was undertaken to assess the degree of correlation between SAB levels as determined by NMS, with the pinprick method as a standard for comparison. Unable to elicit useful responses to sensory examinations in noncommunicative nursing home patients, we chose to study a model population of more cooperative patients.

METHODS

Fourteen consecutive, cooperative, English-speaking adult patients, who consented to receive SAB for surgical anesthesia, were examined. The male/female ratio was 4/10, and ages ranged from 19–80 yr. Surgical procedures undertaken included the obstetric (5), gynecologic (4), orthopedic (2), closed urologic (2), and general surgical (1). All SABs were injected with the patient in the lateral position using 5% lidocaine with 7.5% dextrose, or 0.5% tetracaine with 5% dextrose. Patients were then placed in the supine position. Tests of the level of SAB were performed using a sterile hypodermic needle and a “Sparkle” NMS [Dupaco, Oceansee, GA] within 1 min of each other, 5–10 min after the injection of the drug into the cerebrospinal fluid. Patients were instructed to look away from the site of sensory testing. In alternate patients, pinprick was tested first, while, in the other patients, NMS stimulation was first performed.

The patient’s deltoid area was touched with the hub and then the point of the hypodermic needle, and the patient was instructed, “This is sharp. Say ‘Now!’ when

* Assistant Professor of Clinical Anesthesia, Northwestern University School of Medicine.
† Resident in Anesthesia, McGaw Medical Center and Northwestern University School of Medicine.

Received from the McGaw Medical Center and the Northwestern University School of Medicine, Chicago, Illinois. Accepted for publication January 30, 1987. Work was performed at Columbus Hospital, Chicago, Illinois, affiliated with the Northwestern University Medical School.

Address reprint requests to Dr. Meyer: Department of Anesthesia, Columbus Hospital, 2520 North Lakeview Avenue, Chicago, Illinois 60614.

Key words: Anesthetic technique: spinal. Monitoring: nerve; stimulator.