To the Editor:—The photodetectors in flexible pulse oximeter probes are unable to discriminate between ambient light and the light produced by the light emitting diodes. The interference of ambient light—for example, surgical lights or heating lamps—with pulse oximetry monitoring in the operating room has been described. One solution is to cover the probe site with some opaque material, such as a surgical towel. Although this approach is generally useful, with active neonates or restless patients, the towel frequently becomes displaced and exposes the oximeter probe.

We would like to describe a simple, effective remedy to this problem; that is, covering the probe, while it is attached to a digit, with the packaging from an alcohol swab. This packaging is lined with metallic foil and, thus, is opaque and malleable. Also, the packaging is manufactured in a shape that makes a convenient, dark receptacle for a digit, even one on which a flexible pulse oximeter probe has been placed (fig. 1).

MARC N. SIEGEL, M.D.
Resident in Anesthesiology

NIKOLAUS GRAVENSTEIN, M.D.
Assistant Professor of Anesthesiology and Neurosurgery
University of Florida College of Medicine
Gainesville, Florida 326 10-0254

REFERENCE


(Accepted for publication April 21, 1987.)

A Method of Securing the Stethoscope Head

To the Editor:—Few would deny that the oldest and simplest transducer used in anesthesiology, the precordial stethoscope, is still one of the best. Its only defect, in my experience, is its vulnerability to dislodgment by the efforts of the surgical team, despite many tricks to prevent this.

In prepubertal children where the musculature of the chest wall has not reached its adult development, an alternative site for the stethoscope head is in the left axilla where it is protected from such displacement. By trial and error, it is almost always possible to adequately hear both breath and heart sounds.
Prevention of Hypoxic Gas Mixtures

To the Editor:—The “malfunction” detected and reported by Abraham and Basaguitia1 is of particular interest because it involves failure of a device which is absent on many anesthesia machines and, in ideal practice, would not be necessary. Many users of the Ohio Modulus® have discovered that the chain coupling of its oxygen and nitrous oxide needle valves can be used to initiate 25% oxygen in nitrous flow by turning the blue knob, without touching the green. This step-saving habit courts catastrophe if attempted on any machine without a functioning chain.

One should never increase the flow of nitrous oxide without first confirming adequate gas flow through the oxygen rotameter; conversely, oxygen flow should never be reduced below a safe ratio with the existing nitrous oxide flow. This approach (when raising flows, oxygen first; when decreasing them, nitrous oxide first) more reliably protects against a hypoxic gas mixture than does any device. Device failure often becomes “potentially lethal” only when safe practice is violated.

Timothy J. Herbst, M.D.
Department of Anesthesia
Massachusetts General Hospital
Boston, Massachusetts 02114

REFERENCE
(Accepted for publication April 27, 1987)

A Laboratory Test to Detect Antibodies to Protamine

To the Editor:—We are developing a laboratory test to detect antibodies to protamine in patient’s blood. This test will be used to document that the patient has had a protamine reaction or to predict whether the patient may safely receive protamine in those previously sensitized to this molecule.

To both develop and validate this test, I will need serum from patients who have had such reactions. If you know of a patient who has had severe anaphylactoid reaction and in whom it appears that the agent responsible was protamine, I ask you to contact me.

Jerrold H. Levy, M.D.
Assistant Professor Anesthesiology
Section of Anesthesiology
The Emory Clinic
1365 Clifton Road, N.E.
Atlanta, Georgia 30322
(Accepted for publication April 27, 1987)

Apnea and Syncope Following Intravenous Guanethidine Bier Block in the Same Patient on Two Different Occasions

To the Editor:—Intravenous guanethidine for the treatment of reflex sympathetic dystrophy (RSD) was first introduced by Hannington-Kiff, based on the concept that outgrowing sprouts from damaged axons are