particularly pronounced in debilitated or elderly patients.

REFERENCES

Anesthesiology
67:998–1000, 1987

Hypocalcemia and Prolonged QT Interval Following Carotid Artery Surgery

Edward A. Zane, M.D.,* James B. Eisenkraft, M.D.,† Moshe Haimov, M.D.‡

Hypocalcemia is a complication of thyroidectomy, and is caused by the accidental removal of the parathyroid glands or by a compromise of their vascular supply.1 We describe a patient who, following right carotid endarterectomy, developed a prolonged QT interval due to acute hypocalcemia.

CASE REPORT

A 60-yr-old (60-kg, 160-cm) woman was evaluated for headaches associated with a tingling sensation in the left hand. Bilateral carotid artery disease was found with a 90% stenosis of the right carotid bifurcation. The patient was scheduled to undergo a right carotid endarterectomy. She had essential hypertension for 10 yr and hypothyroidism for 8 yr. She had a lumbar laminectomy performed under uneventful general anesthesia 12 yr previously. She was taking levothyroid 0.125 mg dly, captopril 12.5 mg qd, aspirin 325 mg qd, and calcium 500 mg tid as prophylaxis against postmenopausal osteoporosis. Three weeks prior to admission, the patient had reduced her calcium supplementation to 500 mg qd. Preoperative laboratory data revealed a hematocrit of 39%, hemoglobin 12.9 gm/dl, a normal clotting profile, normal serum electrolytes, calcium 9.6 mg/dl (normal range 8.5–11.0), phosphate 3.4 mg/dl (normal range 2.5–6.0), protein 6.5 g/dl (normal range 6.5–8.5), and albumin 4.8 g/dl (normal range 3.5–4.8). On admission, the chest radiograph showed a normalized heart and normal lung fields. The preoperative EKG showed a normal sinus rhythm with non-specific ST-T wave changes and a QT interval, corrected for heart rate (QTc), of 0.42 s (fig. 1A).

Morphine sulfate, 10 mg im, and diazepam, 5 mg po were given for premedication. Monitoring consisted of an automated blood pressure cuff, EKG, esophageal stethoscope and temperature probe, and mass spectrometer. Anesthesia was induced with thiopental 5 mg/kg, pancuronium 0.1 mg/kg, and lidocaine 1.0 mg/kg iv, and the trachea was intubated with an 8.0-mm ID cuffed endotracheal tube. Anesthesia was maintained with nitrous oxide 50% in oxygen and isoflurane 0.4–0.6% (end tidal). The intraoperative course was unremarkable except for the incidental surgical finding of the vagus nerve lying anterior in the right carotid sheath instead of in its usual postero-lateral position. Intraoperative arterial blood pressures ranged from 125–160 mmHg systolic over 80–100 mmHg diastolic, with a heart rate between 85–90 bpm. Normocapnia was maintained throughout the procedure, and the lowest esophageal temperature measured was 36.2°C. During the procedure, 1000 cc of crystalloid solution (Normosol®) was administered iv, and the estimated blood loss was 150 cc. Residual neuromuscular blockade was reversed with neostigmine 4 mg and glycopyrrolate, 0.8 mg iv. No EKG changes were noted intraoperatively. The trachea was extubated in the operating room, and the patient was transferred to the recovery room in stable condition. There, she was mildly hypotensive (90–100/50–60 mmHg), and a postoperative EKG revealed slightly flattened T-waves as compared with the preoperative EKG and a prolonged QTc of 0.46 s (fig. 1B). The hematocrit was 35%, potassium 3.9 mEq/l, and total calcium 7.5 mg/dl. The ionized calcium concentration was 0.67 mmol/l (normal range 1.12–1.32). Ionized calcium was measured using the NOVA 6

* Resident in Anesthesiology.
† Associate Professor of Anesthesiology; Director of Research.
‡ Clinical Professor of Surgery.

Received from the Departments of Anesthesiology and Surgery, The Mount Sinai Medical Center, New York, New York. Accepted for publication June 30, 1987.

Address reprint requests to Dr. Eisenkraft: Department of Anesthesiology, Box 1016, The Mount Sinai Hospital, One Gustave L. Levy Place, New York, New York 10029.

Key words: Complications: hypocalcemia. Loss; calcium. Surgery: carotid endarterectomy.
electrolyte analyzer (NOVA Biomedical, Newton, MA). This instrument measures ionized calcium directly using an ion selective electrode. Besides a prolonged QTc interval and mild hypotension, there were no signs or symptoms of hypocalcemia, i.e., no peripheral or perioral paraesthesia, carpopedal spasm, anxiety, bronchospasm, hynagossea, seizures, chest pain, or shortness of breath.1 Cieviotek's sign was negative. Because of concern that a progression of hypocalcemia might lead to tetany or ventricular dysrhythmias, calcium gluconate, 1.0 gm, was administered slowly iv. The ionized calcium concentration increased to 1.21 mmol/l, the QTc decreased to 0.42 s (fig. 1C), and arterial blood pressure returned to the preoperative value of 120/70 mmHg. Over the next few days, plasma levels of magnesium, phosphate, and thyroid function tests were all within normal limits. The patient made an uneventful recovery from her surgery and was discharged home on the fifth postoperative day without any further complications. She was readmitted 1 month later for left carotid endarterectomy. During this second admission, and during the perioperative period in particular, no abnormalities were noted in her electrolytes (calcium 9.7 mg/dl, magnesium 1.9 mg/dl, phosphate 3.2 mg/dl, alkaline phosphatase 25 mU/ml) or in her EKGs. She was taking calcium 500 mg tid prior to the second admission.

DISCUSSION

Following an uneventful carotid endarterectomy, our patient presented in the recovery room with a prolonged QT interval (QTi). The interval was prolonged even when corrected for heart rate (QTc) using a modification of Bazett's formula:2 QTc = QTI/VR-R interval. The QT1 is measured from the beginning of the QRS complex to the end of the T-wave, and electrically represents both depolarization and repolarization of the ventricles. The QT1 varies with age, sex, and heart rate, and is measured most accurately in an EKG lead with an initial Q before the QRS complex and where there is a distinct T-wave. The QT1 should not exceed half of the R-R interval, and the upper limit of normal for the QTc is 0.44 s.2

The causes of a prolonged QT1 are numerous, and include congenital and acquired etiologies.3 A few of these etiologies deserve consideration in our case. myocardial ischemia is always a possibility in a post-surgical patient with hypertension and atherosclerotic disease, although there was no EKG evidence of ischemia. The patient was not chronically receiving any medications known to prolong the QT1, although several anesthetics can alter the QTc. Thiopental prolongs the QTc within 90 s after injection, as does succinylcholine.4 The potent inhaled anesthetics have not been assessed for their effects on QTc in normal patients.

Nervous system injury may alter the QT1. There was no postoperative evidence of cerebrovascular accident; however, there have been reports of prolonged QT1 (in the presence of normal electrolytes and calcium) and sudden cardiac arrest following right neck dissection, secondary to surgical trauma to the cervical autonomic nervous system.5 Ablation of the right stellate ganglion, or stimulation of the left, prolongs the QT1 and predisposes to life-threatening ventricular dysrhythmias, especially "torsades de pointes."5 Because our patient had an abnormal position of the right vagus, requiring manipulation of this nerve during dissection of the carotid sheath, it is possible that concurrent right-sided sympathetic damage with predominance of left-sided sympathetic tone accounted for the prolonged QT1.

The most common causes of QT1 alterations are electrolyte disturbances. It is possible that any abnormality altering sodium, potassium, magnesium, or calcium flux in cardiac muscle or conducting tissue may alter the QT1.6 Hypokalemia can cause prominent U waves and the ‘Q-U’ interval may be mistakenly measured, whereas hypocalcemia causes a true QT1 prolongation.6 The relationship between ionized calcium and the duration of the QT1 is well known.7-9 It is the increased duration of phase 2 of the ventricular action potential that results in an increased duration of the S-T segment and, therefore, of the QT1.10 With the exception of hypothermia, there are probably no other agents or metabolic abnormalities which prolong the duration of the S-T segment without changing the duration of the T-wave, although this can be difficult to interpret on an EKG.10

In the recovery room, our patient was found to have a total serum calcium of 7.5 mg/dl and an ionized calcium of 0.67 mmol/l. It is at concentrations below this that the symptoms of hypocalcemia and tetany begin to develop.1 Since severe disturbances in ionized calcium homeostasis may occur without important changes in

Fig. 1. EKG lead II. Paper speed 25 mm/sec. Arrows indicate points used for measurement of QT1.
A. Preoperative EKG, showing QTc = 0.42 sec.
B. Recovery room EKG, showing QTc = 0.46 sec. Ionized calcium was 0.67 mmol/l (normal range 1.13-1.32)
C. Recovery room EKG, following treatment with calcium gluconate. QTc = 0.42 sec. Ionized calcium was 1.21 mmol/l.
total calcium, and only the ionized form is physiologically active, it is important to obtain an ionized calcium where available. Our patient had an ionized calcium of 0.67 mmol/l and, therefore, was truly hypocalcemic regardless of serum albumin or pH.

Having determined the probable cause of this patient's prolonged QT1, the etiology of the acute hypocalcemia remains unresolved. Ionized calcium concentration is affected by blood pH, which alters calcium binding to protein carboxyl groups. Acute acidosis decreases protein binding and increases ionized calcium, while acute alkalosis increases protein binding and decreases ionized calcium. Hyperventilation, sufficient to cause an increase of 0.1–0.2 units in blood pH, produces a 10–15% reduction in the ionized calcium concentration. There was, however, no reason to suspect an acute respiratory alkalosis of sufficient severity to cause such a change in this patient. Heparin may reduce ionized calcium by direct binding, although this is probably not significant in the relatively small dose (5000 units) used in this case.

A well-recognized cause of hypocalcemia is primary hypoparathyroidism following parathyroidectomy and thyroidectomy. Symptomatic hypocalcemia usually occurs 24–72 h postoperatively, but may occur in the immediate postoperative period.1,12 Spontaneous recovery of parathyroid function usually returns after a transient compromise of the blood supply.1 The vascular supply to the parathyroids is via branches of the inferior thyroid artery, which is a branch of the thyrocervical trunk of the subclavian.13 It is most likely that, in our patient, compromise of this blood supply during carotid endarterectomy caused transient hypoparathyroidism with resultant hypocalcemia. This could occur if the patient had two or fewer parathyroid glands, since the contralateral glands would still be expected to produce hormone. Indeed, in a large series of adults studied at autopsy, 0.6% had two or fewer parathyroid glands.14 Continuous monitoring of the EKG in the recovery room facilitated early detection and treatment of hypocalcemic tetany and/or severe ventricular dysrhythmias.

REFERENCES