Anesthesia for Cesarean Section in a Patient with Asherman's Syndrome

CHARLES E. SMITH, M.D.,* SALLY K. WEEKS, M.B.†

Asherman's syndrome, first described in 1950,1–3 is characterized by intrauterine synechiae occurring after postpartum or postabortal curettage. This often results in adherence of the anterior and posterior uterine walls with partial or complete obliteration of the uterine cavity.4–6 Severe obstetrical complications may occur in this group of patients, including prematurity, neonatal death, spontaneous abortion, abnormal presentation, placenta accreta, uterine atony, paper-thin uterus (uterine dehiscence), ectopic pregnancy, and placenta previa.7–17

We report a case of Asherman's syndrome complicated by placenta accreta and cervico-isthmic pregnancy in a parturient undergoing elective cesarean section for breech presentation.

REPORT OF A CASE

A 42-year-old woman, gravida 3, para 1, aborla 1, was admitted at 41 weeks gestation with a history of infertility since the birth of her only child 12 yr earlier. At that occasion, she was delivered by forceps under epidural anesthesia of a live male infant weighing 2535 gm at 37 weeks gestation. Five years prior to the present admission, she had a spontaneous abortion at 12 weeks gestational age, followed by curettage for retained products. She smoked 1½ packs of cigarettes per day for 15 yr, and 15 cigarettes per day during this pregnancy. There were no other medical problems or history of anesthetic complications. Physical examination revealed a healthy 75 kg, 168 cm female. Arterial blood pressure was 110/70 mmHg, heart rate 80 bpm, respiration 20 breaths per minute, and temperature 36.9°C. The uterus was gravid with irregular masses suggestive of fibroids. Ultrason sound examination at 40 weeks revealed moderate oligohydranios and a live infant in the breech presentation. Laboratory results were: hemoglobin 14.4 gm/dl, prothrombin and partial thromboplastin times normal, and platelets 214,000/mm³. Serum electrolytes, glucose, blood urea, and urinalysis were normal.

An elective cesarean section was planned because of the patient's age, long period of infertility, and breech presentation. As there was no mention of obstetric problems in the history, epidural anesthesia was discussed with the patient and the risks explained. It was learned during surgery, however, that a diagnosis of Asherman's syndrome had been made 6 yr earlier on the basis of the history and radiologic evidence of intrauterine synechiae.

After application of a blood pressure cuff, EKG, pulse oximeter, and 16-gauge intravenous cannula, a lumbar epidural catheter was inserted at the L2–L3 interspace. A T4 block was established with 18 cc of 2.5% plain lidocaine and 1/200,000 epinephrine in increments via the epidural catheter. Oxygen, 6 liters per minute, was administered via a plastic face mask. A normal, healthy live girl (Appgar 8 and 9 at 1 and 5 min), weighing 3100 gm, was extracted easily, but the surgeon was unable to deliver the placenta. The uterus was exteriorized, and it was then realized that the entire pregnancy had been in the cervical and lower uterine segment (fig. 1). The small uterine fundus was not dilated, and was sitting on top of the lower expanded uterine segment. The placenta was densely adherent to the upper pole, so that no plane of separation was found. Arterial blood pressure decreased to 60 mmHg systolic, but apparent blood loss was not excessive. Heart rate was 100 bpm, oxygen saturation 99%, and the patient felt dizzy and nauseated. A decision was made to perform an emergency hysterec tony. A 14-gauge cannula was inserted, and 2 liters 0.9% saline were administered with 15 mg of ephedrine iv. A symphysiotomy incision was started. Arterial blood pressure increased to 90/60 mmHg within 5 min, heart rate decreased to 85 bpm, oxygen saturation was 98%, and the patient's symptoms improved. Diamox 10 mg was administered iv in 2.5-mg increments. Prior to skin closure, 50 mg of fentanyl diluted in 10 cc 0.9% saline was given via the epidural catheter for postoperative analgesia. A total of 5.0 l of crystalloid and 0.5 l of hetastarch was administered to maintain stable vital signs. Cesarean hysterectomy was uneventful, and the patient was taken to the recovery room in good condition after a total surgical time of 2 hr. The estimated blood loss was 1.5 liters, and a blood transfusion was not required.

On the first postoperative day, the hemoglobin was 10 gm/dl. The patient was discharged home on the seventh postpartum day with no adverse sequelae.

DISCUSSION

Asherman's syndrome, or traumatic intrauterine synechiae, most often follows postpartum or postabortal curettage.2 The presenting symptoms include amenorrhea, hypomenorrhea, dysmenorrhea, and recurrent abortions, but the most common symptom is infertility.12 The diagnosis is often confirmed by hysterosalpingography and hysteroscopy.18 The obstetrical treatment is relatively simple: surgical lysis of adhesions, and restoration of cervical and uterine patency.19,20 This results in pregnancy in about 50% of cases.10 However, such pregnancies may have a high incidence of complications, the most serious and feared being postpartum and antepartum hemorrhage due to accretion of the placenta21 and cervical pregnancy,22 respectively.

The term placenta accreta refers to all conditions in which the placenta adheres to, invades, or penetrates
through the myometrium. The layer of decidua which normally separates the placental villi and the myometrium at the site of implantation is absent. Although the exact cause is unknown, abnormal adherence of the placenta is found most often in circumstances that predispose to defective decidual formation, such as previous cesarean section, placenta previa, grand multiparity, and previous uterine curettage. Estimates of the incidence of placenta accreta vary from 1 in 2000 to 1 in 7000 deliveries. The incidence of placenta accreta after treatment of Asherman's syndrome is unknown, but appears to be high, ranging from 23 to 40% of deliveries. Farssman reviewed 167 pregnancies after a diagnosis of Asherman's syndrome had been made. Of the 60 that resulted in living children, 14 (23.3%) had placenta accreta, and two (3.3%) had placenta previa. The outcome of 148 pregnancies in patients with Asherman's syndrome has been summarized from 1965-75. Of the 70 that reached term, 19 (27%) had placenta accreta. Fox reviewed cases of placenta accreta from 1945-1969 and found that 30.2% of all cases occurred in women who previously underwent uterine curettage. The diagnosis of placental accretion is usually established when hemorrhage becomes profuse during attempted delivery of the placenta. Removal of an extensively adherent placenta is very difficult, and may cause uterine inversion or rupture accompanied by sudden, massive hemorrhage. Successful treatment depends upon immediate fluid and blood replacement, and nearly always requires emergency cesarean hysterectomy. The overall maternal mortality in patients with placenta accreta (622 cases treated between 1945-1969) was 10% due to hemorrhage, shock, ruptured uterus, or cardiac arrest. A close association between cervical pregnancy and Asherman's syndrome has been documented by several investigators. This rare form of ectopic pregnancy in which implantation of the ovum occurs at the cervical isthmus, or even within the cervix itself, rarely goes beyond the 20th week of gestation, and is usually terminated surgically because of antepartum hemorrhage. However, our patient carried to term and did not bleed prior to delivery, despite implantation of the entire products of conception in the cervico-isthmic and lower uterine regions. Although the mortality rate from cervical pregnancy has declined through the years from 45% in 1911 to 30% in 1945 and 6% in 1953, severe maternal morbidity may still occur as a result of shock from persistent bleeding following attempts at removal of the placenta vaginally (curettage), or to delayed hysterectomy. Traumatic intrauterine synechiae, although relatively rare, is, thus, of serious concern to the anesthesiologist. Pregnancy following a diagnosis of Asherman's syndrome should be considered hazardous. If a diagnosis of placenta accreta, placenta previa, or cervical pregnancy has been confirmed and the patient is actively bleeding, emergency cesarean section under general anesthesia should be performed immediately. Rapid intravenous infusion of crystalloid, colloid, or blood solutions through at least two large bore ivs (16 gauge or larger) is the most effective means of restoring adequate circulating volume in an attempt to maintain tissue oxygenation. It may not be possible to correct the massive blood loss completely until the obstetrician has removed...
the placenta. Placenta accreta will be almost impossible to remove because of its adherence to the uterine wall, and bleeding will worsen with each attempt at removal. Therefore, this diagnosis will usually mandate emergency cesarean hysterectomy. Removal of the highly vascular gravid uterus may entail substantial blood loss. Although major conduction anesthesia (spinal, lumbar epidural) with its accompanying widespread sympathectomy is highly unlikely to be initiated de novo in a bleeding patient, we feel that regional anesthesia is relatively contraindicated in a non-bleeding term parturient with Asherman’s syndrome because of the 25–40% risk of placenta accreta. Although the advantages of regional anesthesia in terms of intact airway reflexes, awake patient, favorable intrauterine environment, and less pressure on the obstetrician to deliver the fetus rapidly are recognized, we feel that the possibility of rapid, severe, major hemorrhage dictates against this technique. Although the outcome of our patient was favorable (cesarean section was performed electively for breech presentation in a hemodynamically stable patient), resuscitation of an awake, nauseated, distressed parturient with hemorrhagic shock during epidural anesthesia may be difficult. General anesthesia with large bore ivs may be urgently required, and cross-matched blood should be readily available. In addition, the neonate may be asphyxiated, acidotic, and hypovolemic, and may require intensive resuscitation at birth. The authors wish to thank Dr. D. R. Bevan for his useful criticisms during the preparation of this manuscript.

REFERENCES

Intravenous Lidocaine Reduces the Incidence of Vomiting in Children after Surgery to Correct Strabismus

LOUISE O. WARNER, M.D.,* GARY L. ROGERS, M.D.,† J. DAVID MARTINO, M.D.,‡ DON L. BREMER, M.D.,§ THOMAS P. BEACH, M.D.,∥

One of the authors (GLR) noticed that the incidence and severity of vomiting after surgery to correct strabismus had decreased in the past few years. The turnabout seemed to coincide with a change in anesthetic technique; the routine administration of iv lidocaine in place of succinylcholine to facilitate endotracheal intubation for short procedures during halothane anesthesia.

We had initially utilized lidocaine to treat—and, subsequently, to prevent—dysrhythmias generated by succinylcholine and airway instrumentation in lightly anesthetized children. Eventually, we realized that tracheal intubating conditions in most patients receiving lidocaine iv without succinylcholine were excellent.

We compared randomly chosen records of 50 patients from 1979 who had had surgery to correct strabismus, and who had received succinylcholine to facilitate intubation of the trachea, to the records of 50 similar patients in 1986 who had received lidocaine instead of succinylcholine. We found that the incidence of postoperative emesis had decreased from 54% to 28%. However, there were enough other variables to warrant a controlled study to substantiate this observation, which is described below.

MATERIALS AND METHODS

The Human Subjects Research Committee approved our project, and each parent/guardian signed a consent form. The subjects were limited to ASA I outpatients undergoing surgery to correct strabismus, aged 18 months through 7 yr. Seventy-five consecutive children who met study criteria were randomized into three groups of 25 by using sealed envelopes: group I received lidocaine, 2 mg/kg, 90 s prior to laryngoscopy; group II received iv succinylcholine, 1 mg/kg, 1 min prior to laryngoscopy; group III received both lidocaine and succinylcholine (same doses and timing). Group III was added to determine if succinylcholine would negate any proposed positive effect from lidocaine.

All received an oral solution containing 0.02 mg/kg of atropine sulfate, 0.75 mg/kg of promethazine, and 25 mg/kg of chloral hydrate 1 h before surgery. Anesthesia was induced with a halothane (2.5%-)-nitrous oxide (70%)-oxygen mixture; drugs used to facilitate tracheal intubation were administered when the child reached a light surgical plane. Respirations were assisted in all, and then controlled with the onset of paralysis in the two groups receiving succinylcholine. All children were hyperventilated for several seconds just prior to laryngoscopy; this was necessary in the "lidocaine only" group to abolish inherent respiratory drive during laryngoscopy and tracheal intubation. Anesthesia was maintained with a halothane (1.5–2%)-nitrous oxide inhalation mixture.