Negative Middle Ear Pressure and Postoperative Vomiting in Pediatric Outpatients


Nitrous oxide anesthesia may cause a higher incidence of postoperative nausea and vomiting than anesthesia without nitrous oxide.1,2 The mechanism of this proposed effect may be related to negative middle ear pressure during recovery, stimulating the vestibular system by placing traction on the round window membrane.3 During 70% nitrous oxide administration, there is a rapid rise in middle ear pressure of approximately 1.0–2.0 cm H2O/min−1. Passive venting via the eustachian tube occurs at 20.0–30.0 cm H2O.3,4 Negative middle ear pressures occur in the postoperative period as the nitrous oxide diffuses out rapidly. The relatively compliant walls of the eustachian tube tend to collapse and do not permit re-equilibration with atmospheric pressure.5 This study was designed to assess the relationship between postoperative middle ear pressure after nitrous oxide and halothane anesthesia and vomiting in pediatric outpatients.

MATERIALS AND METHODS

With institutional approval and informed consent, 60 children, ASA physical class 1 or 2, aged 3–18 yr, were studied. Those with diseases known to increase vomiting or to contraindicate the use of nitrous oxide were excluded. Procedures on the middle ear, tonsillectomy and adenoidectomy, and ocular surgery were thus excluded. Patients with known middle ear dysfunction...
were also excluded. Patients were assessed for a history of recent upper respiratory tract infection by questioning as to whether there had been any cough or rhinorrhea within the last week. All were day care patients undergoing peripheral surgery.

Bilateral measurements of middle ear pressure were performed pre- and postoperatively using impedance tympanography with a Madsen Electronics® 29330 Impedance Audiometer, as previously described. Any patients with abnormal baseline tympanograms (without a clearly defined peak) were then excluded from the study. No premedication was given. Anesthesia was induced with thiopental 4–6 mg·kg⁻¹ and atropine 0.02 mg·kg⁻¹ iv, and maintained with 70% nitrous oxide in oxygen and halothane (1–3%). Endotracheal intubation was performed, if indicated, with the aid of succinylcholine 1.0–2.0 mg·kg⁻¹ iv. The duration of anesthesia with nitrous oxide was at least 15 min. No prophylactic antiemetic drugs were used. Postoperative analgesia was obtained with regional nerve blocks, local anesthetic infiltration, acetaminophen 10–15 mg·kg⁻¹, or codeine 1–1.5 mg·kg⁻¹ orally.

Vomiting observed during the recovery room and daycare unit stay (early vomiting) and during the ensuing 24 h (late vomiting) was documented by the nursing staff and by a parent telephone interview. Patient followup was 100%. The time from discontinuation of nitrous oxide to the first oral intake and the total recovery time (defined as the time from discontinuation of anesthetic gases to the time of discharge) were recorded. Postoperative middle ear pressures were recorded prior to discharge, and the time elapsed from discontinuation of nitrous oxide was noted. Abnormal postoperative ear pressure was defined as a deviation of greater than 5.0 cm H₂O from baseline measurement.

Statistical analysis was performed using the Mann-Whitney U test to compare age, weight, duration of nitrous oxide exposure, time to oral intake, total recovery time, and time to middle ear pressure measurement in vomiting and non-vomiting patients. Contingency table analyses with Yates modification, where appropriate, were performed to compare the incidence of vomiting and abnormal ear pressure, >8 yr of age and ≤8 yr of age, use of endotracheal intubation, type of surgery, and the use of codeine. Analyses also compared abnormal ear pressure versus age and recent upper respiratory tract infection. P values of <0.05 were considered significant.

RESULTS

A total of 60 patients, 17 boys and 43 girls, were studied. The pre- and postoperative middle ear pressures recorded in vomiting and nonvomiting patients are shown in figure 1. The majority of surgical procedures studied were dental (table 1).

Vomiting occurred in 14 of 60 patients (23%). Five patients vomited while in hospital, early vomiting (8%); and nine vomited only in the ensuing 24 h, late vomiting (15%). Three of the five early vomiting patients also vomited at home. The duration of nitrous oxide exposure was significantly longer in the vomiting group. Comparison of other data between patients who vomited and those who did not revealed no difference in

<table>
<thead>
<tr>
<th>Table 1. Types of Surgical Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Dental</td>
</tr>
<tr>
<td>Orthopedics</td>
</tr>
<tr>
<td>General</td>
</tr>
<tr>
<td>Urology</td>
</tr>
<tr>
<td>Plastic</td>
</tr>
</tbody>
</table>
TABLE 2. Comparison of Vomiting and Non-vomiting Patients

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Vomiting (n = 14)</th>
<th>Non-vomiting (n = 46)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.6 ± 5.0</td>
<td>10.7 ± 4.8</td>
<td></td>
</tr>
<tr>
<td>36.5 ± 17.8</td>
<td>36.0 ± 17.8</td>
<td></td>
</tr>
<tr>
<td>74.2 ± 43.5</td>
<td>42.5 ± 32.5</td>
<td></td>
</tr>
<tr>
<td>93.0 ± 64.7</td>
<td>86.2 ± 26.4</td>
<td></td>
</tr>
<tr>
<td>143.5 ± 57.9</td>
<td>121.6 ± 26.4</td>
<td></td>
</tr>
<tr>
<td>152.6 ± 54.3</td>
<td>139.7 ± 27.1</td>
<td></td>
</tr>
</tbody>
</table>

Denotes statistical significance (P < 0.01) (mean ± SD).
† Time from end of N2O administration to discontinuation.
‡ Time from end of N2O administration to first oral intake.
§ Time from end of N20 administration to postoperative ear pressure measurement.

age, weight, the time from discontinuation of nitrous oxide to the first oral intake, the time from discontinuation of nitrous oxide to middle ear pressure measurement, or the total recovery time (table 2).

Abnormal negative ear pressures postoperatively were recorded unilaterally in 18% of cases and bilaterally in 62% of cases. Pressures were normal bilaterally in 20% of patients. The incidence of vomiting was not higher in patients with either unilateral or bilateral abnormal ear pressures (table 3).

Children aged 8 yr and under had a greater incidence of postoperative negative ear pressures (table 4).

Analyses were performed, but failed to demonstrate any relationship between vomiting and two age groups (8 yr and under versus over 8 yr), sex, endotracheal intubation, dental versus other surgery, or codeine analgesia. Upper respiratory tract infection within 1 week was not found to be associated with a higher incidence of abnormal postoperative middle ear pressure.

DISCUSSION

Postoperative nausea and vomiting may have many causes, including pain itself, the use of narcotic analgesics, stimulation of extracutaneous muscles, peritoneal traction and subsequent ileus, and swallowed blood. Preexisting neurological or gastrointestinal disorders and certain operative procedures, particularly head and neck and extracutaneous muscle procedures, predispose to vomiting. To examine the effect of negative middle ear pressure secondary to nitrous oxide administration on vomiting, all patients received nitrous oxide, and patient's preoperative ear pressures served as a control, as postoperative abnormal ear pressures were defined as greater than −5 cm H2O, change from the preoperative measurement. Patients and procedures with a known high incidence of vomiting were excluded. Intraperitoneal procedures and those in which adequate analgesia could not be obtained with the use of infiltration or regional analgesia, acetyaminophen, or codeine were also excluded. This eliminated the contribution of ileus, pain, and the use of morphine and meperidine to incidence of postoperative vomiting.

Lerman et al. demonstrated no increased vomiting with the use of codeine versus acetyaminophen in outpatient pediatric anesthesia after strabismus repair.

Nausea, a subjective symptom, is very difficult to assess in children, and was, therefore, not studied. All patients were followed for 24 h postoperatively. Late vomiting occurred in 15% of cases, thus confirming that studies which document only early vomiting will underestimate the true incidence of postoperative vomiting.

A previous study in children suggested that all pediatric patients developed negative middle ear pressures after nitrous oxide exposure. The present study shows that at least 20% of children have normal ear pressures prior to discharge, and that this is more likely in children greater than age 8 yr. This may be a result of maturation of the junction of the bony and cartilaginous portion of the middle ear, the isthmus, which occurs after age 6 yr. The eustachian tube is then less compliant, and collapse and dysfunction are less likely.

The association between longer duration of anesthesia and vomiting has been reported. The mechanism of increased vomiting with more prolonged nitrous oxide exposure has been suggested to be due to increased gastric distension. This may be exacerbated by
air swallowing or gastric inflation by ventilation via a mask prior to intubation. No increase in vomiting was seen in tracheally intubated patients who would have received positive pressure mask ventilation prior to intubation. Nitrous oxide anesthesia does not affect bowel motility.

We found no association between a history of recent upper respiratory infection and negative postoperative ear pressure. However, all admission tympanograms were normal, suggesting that preoperative eustachian tube function in this group was normal, despite a recent upper respiratory tract infection. A recent study has questioned any association between the use of nitrous oxide and development of postoperative nausea and vomiting in adults. Female gender, a younger age, and a previous history of nausea and vomiting were found to be associated with vomiting. Although 60% of cases in this study were female, 41% were under age 12 yr and likely prepubertal. No association between female gender and vomiting was found.

In summary, we found no association between postoperative negative middle ear pressure and postoperative vomiting in outpatient pediatric patients after nitrous oxide and halothane anesthesia.

REFERENCES


Improving Arterial Oxygenation during One-lung Ventilation


Maintaining adequate oxygenation during one-lung ventilation (OLV) for thoracic surgery is often a problem. Studies have shown a significant incidence of PaO₂ values less than 70 mmHg in spite of high inspired oxygen concentrations (FiO₂) when the non-dependant


* Assistant Professor of Anesthesia.
† Associate Professor of Surgery.

Received from the Departments of Anesthesia and Thoracic Surgery, Montreal General Hospital and McGill University, Montreal, Quebec, Canada. Accepted for publication September 23, 1987. Presented in part at the Annual Meeting of the Canadian Anaesthetists Society: Calgary, Alberta, June, 1987.

Address reprint requests to Dr. Slinger: Department of Anesthesia, Montreal General Hospital, 1650 Avenue Cedar, Montreal, Quebec, Canada H3G 1A4.

Key words: Anesthesia, thoracic. Anesthetic techniques, endobronchial.