Capsaicin Sensitive Afferents Contribute to Acute Airway Edema following Tracheal Instillation of Hydrochloric Acid or Gastric Juice in the Rat

Claes-Roland Martling, M.D., Ph.D.,* Jan M. Lundberg, M.D., Ph.D.†

The formation of acute edema in the tracheobronchial mucosa following local instillation of hydrochloric acid or gastric juice was studied in rats. Protein extravasation using the Evans blue technique was measured and used to indicate edema formation. A pH dependent Evans blue extravasation was observed whereby pH 2 produced a small, pH 1.5 an intermediate, and pH 1 a pronounced effect. Also, gastric juice (pH 1.3 ± 0.1) induced a marked Evans blue extravasation in the tracheobronchial mucosa. Rats which had been pretreated with capsaicin (100 mg/kg s.c.) had a much lower Evans blue extravasation following local instillation of both hydrochloric acid and gastric juice. Thus, the increase in Evans blue content induced by acid at pH 1.5 was abolished while about 50% of the response remained at pH 1. The protein extravasation caused by gastric juice was reduced by about 70% after capsaicin treatment. Terbutaline (73 nmol/kg, iv) or enprofylline (25 μmol/kg, iv) injected intravenously 10 min before, as well as hydrocortisone injected immediately after the intratracheal instillation of gastric juice, did not influence the magnitude of edema formation. Betamethasone (0.25 mg/kg ip) pretreatment 24 h prior to the gastric juice exposure enhanced extravasal extravasation. In conclusion, acute protein extravasation in the lower airway mucosa induced by hydrochloric acid or gastric juice is mainly dependent on capsaicin sensitive sensory nerves, suggesting that local release of mediators, such as tachykinins, play a key role in this reaction. (Key words: Complications: aspiration. Lung: airway edema; aspiration; capsaicin. Mediators: tachykinins.)

REGURGITATION AND SUBSEQUENT aspiration of gastric juice into the lower airways is a feared complication in anesthesia. Mendelson, in 1946,1 described two different entities in the aspiration syndrome based both on clinical observations and experimental work on rabbits. The first type was due to aspiration of liquid material, which produced an asthma-like condition with distinct clinical, roentgenologic, and pathologic features. The second type was caused by aspiration of solid material producing laryngeal and bronchial obstruction with massive atelectasis and suffocation. Mendelson pointed out the importance of acid in the induction of the aspiration syndrome. Subsequently, Teabeaul5 found that the aspirated material must have a pH of <2.4 to cause aspiration pneumonitis. In other studies, the critical pH has been found to be in a similar range in both experimental animals5,6 and humans.7 Aspiration of either hydrochloric acid or gastric juice is associated with both acute symptoms5,8 and late pathological changes.1,4,9-13 The histopathologic changes, which include edema, exudate, aggregation of a large number of neutrophils and hemolyzed red blood cells, and necrotizing and hemorrhagic lesions, seem to be maximal after 48 h.4,6 However, in only 3 min after aspiration, there are extensive areas of pulmonary atelectasis, capillary congestion in the alveolar walls,11 mild interstitial edema, and various degrees of intraalveolar hemorrhage.14 There are also acute symptoms, such as bronchospasm,7,8 after aspiration of any material, liquid or solid. A large dose of atropine and cervical vagotomy can, however, diminish the bronchoconstrictor response to aspiration,7,8 indicating involvement of a vagally mediated parasympathetic reflex mechanism elicited by airway irritation.

Increasing evidence suggests that multiple neuropeptides released from peripheral branches of sensory nerves, located under and within the lining epithelium, around blood vessels, and within the tracheobronchial smooth muscle layer, are involved in the mediation of several local protective responses in the airways.15 The tachykinin family of neuropeptides (Substance P [SP], neurokinin A [NKA] and neuropeptide K [NPK]), as well as calcitonin gene-related peptide (CGRP), are present in a subpopulation of afferent neurons in the airways of several species, including rats16,17 and humans.15,16,18 Tachykinins and CGRP are released from sensory nerves in the guinea pig lung in vitro after irritation with capsaicin, the pungent agent in hot peppers, as well as after histamine and bradykinin.19-21 Pretreatment with a high dose of capsaicin is associated with an almost total and long-lasting depletion of tachykinins and CGRP in the airways.15 Following systemic or local administration, tachykinins are active in induc-

* Assistant Professor, Department of Anesthesia.
† Associate Professor, Department of Pharmacology.

Received from the Departments of Anesthesia and Pharmacology, Karolinska Institutet, Stockholm, Sweden. Accepted for publication October 2, 1987. Supported by grants from the Swedish Medical Research Council (14X-6554), the American Council for Tobacco Research, the Swedish Tobacco Company, the Swedish Work and Environmental Fund, the Swedish Society of Medicine, and Funds from the Karolinska Institute.

Address reprint requests to Dr. Martling: Department of Anesthesia, Karolinska Hospital, S-104 01 Stockholm, Sweden.
ing mucosal edema in many tissues, such as the airway mucosa. Thus, tachykinins released from peripheral branches of sensory nerves in the lower airways may be involved in responses such as mucosal edema formation due to plasma extravasation, as well as bronchoconstriction, while both tachykinins and CGRP may contribute to local vasodilation.

The present study was performed to investigate whether capsaicin sensitive afferent nerves are involved in the formation of acute mucosal edema in the lower airways following local instillation of hydrochloric acid or gastric juice.

Materials and Methods

Ninety-seven male rats (250–350 g) were used for the tracheal instillation experiments. Three other rats were used for collection of gastric juice.

The study was approved by the Ethics Committee at the Karolinska Institute.

Capsaicin Pretreatment

Thirty-two rats were pretreated with capsaicin dissolved in 10% ethanol and 10% Tween 80. A total dose of 100 mg/kg capsaicin from a stock solution of 10 mg/ml was injected subcutaneously. The total dose was divided into three portions (20 mg/kg + 30 mg/kg + 50 mg/kg) injected on three consecutive days. On all three occasions, the rats were anesthetized in a glass box with ether before capsaicin administration. To counteract respiratory impairment associated with capsaicin administration, the rats received pretreatment with terbutaline (0.1 mg/kg) and theophylline (10 mg/kg) 5 min prior to the capsaicin injections. The rats were used in the tracheal edema experiments 1 week after completion of the capsaicin pretreatment, since, at that time, the content of tachykinins and CGRP in sensory nerves is markedly reduced. The effectiveness of capsaicin pretreatment was controlled by installing one drop of a 0.1 mg/ml capsaicin solution into one eye. Absence of wiping with the forepaws and blepharospasm was taken as an indication of successful capsaicin desensitization. In addition, a small piece of the trachea from each animal was subjected to analysis of the presence of SP-immunoreactive nerve fibers using immunohistochemistry. In all capsaicin treated animals, an almost total loss of SP-immunoreactive nerves was observed.

Collection of Gastric Juice

Three rats were anesthetized with pentobarbital (50 mg/kg ip). The abdominal wall was opened and the stomach exposed. After closure of the pylorus with a ligature, the ventricular fundus was opened and the inferior of the stomach carefully rinsed with saline. A polyethylene tube (PE 150) was introduced into the ventricular lumen. The fundus and the abdominal wall were then closed with sutures. Stimulation of gastric juice secretion was performed with iv injection of pentagastrin (50 μg/kg). The secreted gastric juice was collected by means of aspiration with a 2-ml syringe. The aspirate was centrifuged at 3000 rpm for 10 min in order to separate the gastric juice from larger particulate matter. The gastric juice was then removed with a pipette and the pH was measured using a pH meter (Radiometer, Copenhagen). The pH of the gastric juice was 1.3 ± 0.1.

Tracheal Instillation Experiments

The rats were anesthetized with pentobarbital (40 mg/kg ip). To monitor the cardiovascular status of the animals before intratracheal injections, blood pressure and heart rate were recorded using a catheter in the left carotid artery and a Statham pressure transducer connected to a tachygraph unit and a Grass Polygraph 7E (Grass Instruments Co., MA). After careful surgical exposure of the trachea Evans blue (20 mg/kg, 10 mg/ml dissolved in saline) was injected into a femoral vein. The rats were subsequently raised to a 60° head-up angle, and the cricothyroid membrane was penetrated with a thin needle attached to a Hamilton microsyringe. Twenty-five microliters of saline, hydrochloric acid at different pH, or gastric juice was then slowly injected during 5 s into the tracheal lumen in a caudal direction within 2 min after the iv administration of Evans blue. Five minutes after the intratracheal injection, the thorax was opened and the animals were manually perfused with 60 ml of saline via the aorta for 30 s. A 5-mm piece of the trachea just above the carina and a piece of a stem bronchus were dissected out. The pieces were pressed between filter papers to remove excess fluid, weighed, placed in Ellerman tubes, and frozen at −20°C before analysis of the Evans blue content.

Six control rats were analyzed after tracheal instillation of 25 μl saline (table 1). In one part of the study, hydrochloric acid of different pH (pH 1, 1.5, and 2) was injected into the trachea of normal (n = 23) and capsaicin pretreated (n = 23) rats (table 1). In other series of experiments, gastric juice was injected into the trachea of nine normal and nine capsaicin pretreated animals, as well as into normal rats that had been pretreated with other drugs (table 1). Thus, five rats were pretreated with terbutaline (Bricanyl®, Draco, Sweden) (73 nmol/kg iv), and seven rats received enprofylline (Draco, Sweden) (25 μmol/kg, iv) 10 min before the intratracheal injection. Five rats were pretreated with betamethasone (Betapred®, Glaxo, England) (250 μg/kg ip)
TABLE 1. Pretreatment

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>Capsaicin</th>
<th>Terbutaline</th>
<th>Enprofylline</th>
<th>Hydrocortisone</th>
<th>Beta-methasone</th>
<th>24 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saline</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrochloric acid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH 1</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH 1.5</td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH 2</td>
<td>7</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastric juice</td>
<td>9</td>
<td>9</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Experimental protocol indicating the number of animals used in the different groups. Saline was injected into the tracheas of six normal rats. Hydrochloric acid of pH 1, 1.5, and 2 was injected into the tracheas of normal rats and rats pretreated with capsaicin (total dose 100 mg/kg, s.c.) 1 week prior to the experiment. Gastric juice was injected into the tracheas of normal rats and rats which had received various types of pretreatment: capsaicin (see above), terbutaline (73 nmol/kg, iv), and enprofylline (25 µg/kg, iv) were both administered 10 min prior to the intratracheal injections, hydrocortisone (5 mg/kg, iv) was administered immediately after the intratracheal injections while betamethasone (0.25 mg/kg, ip) was given 24 h before the intratracheal injections. 24 h indicates five rats whose extravasation was studied with Evans blue 24 h after the intratracheal injection of gastric juice. Finally, five rats were given Evans blue 24 h after the gastric juice instillation into the trachea, and perfused with saline 5 min later.

EXTRACTION AND QUANTIFICATION OF EVANS BLUE

The tracheal and bronchial pieces were placed in 2.0 ml formamide and incubated for 24 h at 50°C in a water bath. A Shimadzu RF 540 spectrofluorimeter was used for measurements of the red fluorescence of Evans blue. The excitation wavelength was 620 nm (band width 10 nm) and the emission wavelength 687 nm (band width 10 nm), which was found to be the wavelength exhibiting the maximal emission when tested before analysis. Calculations were based on standards of Evans blue in formamide. There is a linear relationship between fluorescence and Evans blue concentration up to a concentration of at least 200 ng/ml.

STATISTICAL METHODS

The mean and standard error of the mean (SEM) were used throughout the study. Mann-Whitney's U-test and the Kruskal-Wallis analysis of variance with multiple comparisons were used to test statistical significance.

RESULTS

Five minutes after intratracheal instillation of hydrochloric acid or gastric juice, a marked increase in tracheobronchial Evans blue content was observed compared to saline injections (figs. 1, 2). Twenty-four hours after intratracheal application of gastric juice, no increased Evans blue extravasation was present compared to control rats into which saline was injected (fig. 2).

A relationship existed between pH of the hydrochloric acid and the magnitude of Evans blue extravasation.
sation in trachea and bronchi. Thus, a marked extravasation was observed at pH 1 and 1.5, but not at pH 2.0, compared to saline injections (fig. 1). After capsaicin pretreatment, the Evans blue extravasation in both trachea and bronchi was significantly smaller when acid at pH 1 (P < 0.05) and 1.5 (P < 0.001 and P < 0.05, respectively) was injected. Thus, whereas the increase in Evans blue content upon injection with acid at pH 1.5 was virtually abolished after capsaicin pretreatment, a considerable response still remained in trachea (50%) and bronchi (42%) at pH 1 (fig. 1).

After intratracheal injection of gastric juice (pH 1.3), capsaicin pretreatment markedly (P < 0.001) decreased the Evans blue extravasation response by 62% in the trachea and 70% in the bronchi (fig. 2). Intravenous terbutaline pretreatment caused a slight, but not significant, inhibition of the gastric juice induced extravasation, while enprofylline and hydrocortisone did not affect this response (fig. 2). Betamethasone given 24 h prior to the intratracheal injection of gastric juice significantly (P < 0.05) enhanced (by 51%) the Evans blue extravasation in the trachea, but not in bronchi (fig. 2).

Terbutaline and enprofylline treatment was associated with a rapid decrease in the arterial blood pressure and an increase in heart rate. Thus, the mean arterial blood pressure had decreased by 18 ± 13 mmHg (n = 5) and 16 ± 10 mmHg (n = 7), respectively, while the heart rate had increased by 42 ± 8 (n = 5) and 66 ± 10 (n = 7) beats/min, respectively, as measured 10 min after the intravenous injection of the two drugs just prior to the tracheal instillations. The maximal fall in blood pressure induced by terbutaline and enprofylline during this 10-min period was 32 ± 6 mmHg (n = 5) and 45 ± 6 mmHg (n = 7), respectively. Pretreatment with hydrocortisone and betamethasone did not influence blood pressure or heart rate compared to untreated animals (data not shown).

Discussion

In the present study, we have demonstrated and characterized an acute, pH-dependent protein extravasation in the lower airways upon local instillation of acidic solutions. Evans blue, when injected into the systemic circulation, rapidly binds to macromolecules, i.e., serumalbumin. An increased tissue content of the Evans blue dye is, therefore, considered to reflect increased extravasation of plasma proteins through postcapillary vessels, subsequently leading to edema formation. The tracheo-bronchial Evans blue extravasation produced by hydrochloric acid and gastric juice was an acute response, since no increased extravasation was present 24 h after the intratracheal injections. The magnitude of the acute airway edema, represented by Evans blue extravasation, had a similar pH-dependence, as has been established also for histopathological changes and mortality.

The tracheo-bronchial edema formation upon instillation of acid in our study was, to a large extent, dependent on the functional integrity of a special population of sensory nerves, since, in the capsaicin pretreated animals, the Evans blue extravasation was absent at pH 1.5 and considerably reduced at pH 1. Protein extravasation in the rat airways induced by antidromic vagal nerve stimulation or, for instance, inhalation of cigarette smoke or ether vapor, as well as the flare reaction induced by histamine or allergen challenge in the human skin, can also be abolished by capsaicin pretreatment, suggesting that these sensory nerves are activated...
by a variety of chemical stimuli. Furthermore, electrophysiological recordings from single vagal C-fiber afferents have indicated an increase in electrical activity upon inhalation of sulfur dioxide, as well as together with intravascular administration of capsaicin. The capsaicin pretreatment seems to specifically affect peptides in a population of sensory nerves of the lung. Thus, tachykinin- and CGRP-like immunoreactivities are depleted, while both biochemical and histochemical evidence suggest that the cholinergic, sympathetic, and vasoactive intestinal polypeptide (VIP)-containing systems are intact after capsaicin pretreatment.

Activation of capsaicin sensitive afferents and local release of neuropeptides seem to induce protein extravasation, increased blood flow and bronchoconstriction. Protein extravasation is readily induced by tachykinins, while CGRP induces Evans blue extravasation per se. CGRP, however, potentiates the edema induced by tachykinins, probably due to its potent vasodilatory property. A vasodilator response in the trachea upon vagal nerve stimulation and capsaicin aerosol still remains after pretreatment with a ganglionic blocking agent, to prevent parasympathetic vasodilator mechanisms, suggesting an involvement of local release of sensory neuropeptides with potent vasodilator properties, such as tachykinins and CGRP.

Tachykinins, especially NKA, have been shown to cause powerful contraction of airway smooth muscle, both in vitro and in vivo, while CGRP seemingly lacks bronchoconstrictor effects. The non-cholinergic bronchoconstriction in the guinea pig induced by vagal nerve stimulation, is administered capsaicin, or inhalation of ether is abolished after capsaicin pretreatment, indicating that changes in bronchial smooth muscle tone are also dependent on the existence of an intact innervation with peptide containing C-fiber afferents. SP analogues with tachykinin antagonistic properties have been shown to diminish both the protein extravasation and bronchoconstriction elicited by activation of capsaicin sensitive afferents, which further supports an involvement of tachykinins in these responses. It is, therefore, likely that irritant agents are capable of initiating central reflexes, including cough and secretion, but also local non-cholinergic respys, such as protein extravasation, which are likely to be at least partially mediated by release of tachykinins and/or CGRP from peripheral branches of sensory nerves.

The relative importance of different mediators for the protein extravasation response remains to be established using specific antagonists. Interestingly, gastroesophageal reflux of gastric juice has been proposed as a factor capable of initiating cough, hoarseness, and asthma, especially nocturnal asthma and wheezing. A reflex induced bronchoconstriction may be elicited either via a central vagal reflex from afferents in the esophagus, or by subsequent aspiration of small amounts of gastric juice into the airways, causing local and/or central reflexes. In addition, airway edema formation could contribute to reflex induced symptoms. About 50% of the Evans blue extravasation in the trachea and bronchi induced by hydrochloric acid at pH 1, as well as 30–40% of the response to gastric juice, remained in the capsaicin treated animals. It is, therefore, likely that an acid solution at pH 1, in addition to activating capsaicin-sensitive sensory nerves, also produces protein extravasation via other mechanisms, such as, presumably, by a direct burning effect. It seems clear from earlier studies on vascular permeability in rat trachea that intubation evokes massive protein extravasation via mechanisms which are resistant to capsaicin treatment.

Terbutaline, which is a selective β2-adrenoceptor agonist known to inhibit bradykinin induced increase in vascular permeability to macromolecules, and enprofylline, which reduces leakage elicited by capsaicin and leukotrienes, did not significantly change the Evans blue extravasation in the rat trachea induced by instillation of gastric juice. It has previously been shown that local treatment with terbutaline did not affect the tracheal protein extravasation elicited by exposure to cigarette smoke, while the massive Evans blue leakage induced by mechanical stimulation of the tracheal mucosa (intubation was reduced). The reported effectiveness of both terbutaline and enprofylline in the present doses as inhibitors of protein leakage in guinea pig trachea may either indicate important differences between species and/or mechanisms of edema formation. In this context, it is of interest that the presently used doses of terbutaline and enprofylline caused marked initial fall in blood pressure and subsequent tachycardia, which also could have influenced the extravasation reaction due to changes in local perfusion pressure.

The beneficial effects of treatment with steroids after aspiration of acidic material has been a controversial issue. In the present study, an immediate intravenous injection of hydrocortisone did not affect the acute protein extravasation induced by gastric juice. In fact, an increased tracheal Evans blue extravasation response was present in the rats which were treated with betamethasone 24 h prior to gastric juice injection. In another study, acute edema formation in the trachea upon vagal nerve stimulation in rats was also enhanced by glucocorticoid pretreatment. Thus, it seems possible that, under certain circumstances, steroids might
enhance protein extravasation. Furthermore, cortico-
steroid therapy has been reported to promote the de-
velopment of diffuse interstitial lung fibrosis induced by
the chemical irritant butylated hydroxytoluene.41

In conclusion, the present data indicate that activa-
tion of peptide containing capsaicin sensitive afferent
fibers represents a key step in the mediation of the acute
protein extravasation in the tracheobronchial wall upon
local instillation of hydrochloric acid and gastric juice in
the rat. This reaction does not seem to be reduced by
pretreatment with terbutaline, enprophylline, or ter-
roids. Whether a similar reaction occurs upon aspira-
tion of gastric material in humans remains to be estab-
lished, although it seems clear that tachykinin and
CGRP containing sensory nerves are also present in
human lower airways.15

References

1. Mendelson CL: The aspiration of stomach contents into the lungs

2. Teahon RJ II: Aspiration of gastric contents: An experimental

3. Taylor G, Pryse-Davies J: The prophylactic use of antacids in the
prevention of the acid-pulmonary aspiration syndrome (Mend-

4. Taylor G, Pryse-Davies J: Evaluation of endotracheal steroid ther-
apy in acid pulmonary aspiration syndrome (Mendelson’s syn-

5. Vandam LD: Aspiration of gastric contents in the operative per-

7. Exarhos ND, Logan WD Jr, Abbott OA, Hatcher CR: The impor-

8. Tuchman DN, Boyle JT, Pack AI, Scwartz J, Kokonas M, Spitzer AR, Cohen S: Comparison of airway responses following trache-
al or esophageal acidification in the cat. Gastroenterology 87:872–881, 1984

9. Lewinski A: Evaluation of methods employed in the treatment of
the chemical pneumonitis of aspiration. ANESTHESIOLOGY 26:37–44, 1965

10. Bannister WK, Sattiaro AJ, Otis RD: Therapeutic aspects of aspira-
tion pneumonitis in experimental animals. ANESTHESIO-

11. Hamelberg WB, Boscomworth PR: Aspiration pneumonitis: Experi-

steroid therapy in aspiration pneumonitis. ANESTHESIO-
LOGY 40:129–135, 1974

13. Lawson DW, Defalco AJ, Phelps JA, Bradley BE, Mclellan
JE: Corticosteroids as treatment for aspiration of gastric con-

permeability—Correlation with functional, radiographic and
postmortem changes after fluid aspiration. Am Rev Respir Dis
120:599, 1979

15. Lundberg JM, Saria A: Polypeptide-containing neurons in airway

16. Lundberg JM, Hökkfelt T, Martling C-R, Saria A, Cuello C: Sub-
stance P-immunoreactive sensory nerves in the lower respira-
tory tract of various mammals including man. Cell Tiss Res
255:251–261, 1984

17. Cadieux A, Springall DR, Mulderly PK, Rodrigo J, Ghatei MA,
Terenghi G, Bloom SR, Polak JM: Occurrence, distribution and
ontology of CGRP immunoreactivity in the rat lower respi-
atory tract: Effect of capsaicin treatment and surgical de-

18. Martling C-R, Theodorsson-Norheim E, Lundberg JM: Occur-
rence and effects of multiple tachykinins: Substance P, neuro-
kinin A and neuropeptide K in human lower airways. Life Sci
40:1633–1643, 1987

19. Martling C-R, Saria A, Fischer JA, Hökkfelt T, Lundberg JM:
Calcitonin gene-related peptide and the lung: Neuronal coex-
istence with substance P, release by capsaicin and vasodilatory
effect. Regul Pept, 1987, in press

20. Saria A, Theodorsson-Norheim E, Gamse R, Lundberg JM: Re-
lease of substance P and substance K-like immunoreactivity
from the isolated perfused guinea pig lung. Eur J Pharmcol
106:207–208, 1984

21. Saria A, Martling C-R, Yan Z, Theodorsson-Norheim E, Lund-
berg JM: Release of multiple tachykinins from sensory nerves
in the lung by bradykinin, histamine, nicotine and vagal nerve

22. Lundberg JM, Saria A: Capsaicin-sensitive vagal nerves involved
in control of vascular permeability in rat trachea. Acta Physiol

23. Lundberg JM, Martling C-R, Saria A, Folkers K, Rosell S: Giga-
rette smoke-induced airway oedema due to activation of cap-
saicin-sensitive vagal afferents and substance P release. Neuro-
sciences 10:1361–1368, 1985

24. Lundberg JM, Saria A: Bronchial smooth muscle contraction in-

25. Martling C-R: Sensory nerves containing tachykinins and CGRP
in the lower airways. Functional implications for bronchocon-
striction, vasodilatation and protein extravasation. Acta Phys-

26. Martling C-R, Gazeulis B, Lundberg JM: Nervous control of trac-
heal blood flow in the cat measured by the laser Doppler

26a. Hua X-Y, Theodorsson-Norheim E, Brodin E, Lundberg JM,
Hökkfelt T: Multiple tachykinins (neurokinin A, neuropeptide
K and substance P) in capsaicin-sensitive sensory neurons in
the guinea-pig. Regul Pept 13:1–19, 1985

27. Gamse R, Holzer P, Lembeck P: Decrease of substance P in pri-
mary afferent neurons and impairment of neurogenic plasma

and morphological evaluation of vascular permeability in animal

29. Roberts AM, Hahn HL, Schultz HD, Nadel JA, Coleridge HM,
Coleridge JCG: Afferent vagal C-fibers are responsible for the
reflex airway constriction and secretion evoked by pulmonary
administration of SO2 in dogs. Physiologist 25:226, 1982

30. Coleridge JCG, Coleridge HM: Afferent vagal C-fiber innerva-
tion of the lungs and airways and its functional significance.

31. Lundberg JM, Franco-Cereceda A, Hua X-Y, Hökkfelt T, Fischer

Downloaded From: http://anesthesiology.pubs.asahq.org/pdfaccess.ashx?url=/data/journals/jasa/931377/ on 11/04/2018

